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Abstract  

Let { }nX n ,,2,1 …=  be a finite n -element set and let nnn DandAS ,  be the 

Symmetric, Alternating and Dihedral groups of nX , respectively. In this thesis we 

obtained and discussed formulae for the number of even and odd permutations (of an 

−n element set) having exactly k  fixed points in the alternating group and the 

generating functions for the fixed points. Further, we give two different proofs of the 

number of even and odd permutations (of an −n element set) having exactly k  fixed 

points in the dihedral group, one geometric and the other algebraic. In the algebraic 

proof, we further obtain the formulae for determining the fixed points. We finally 

proved the three families; ( ),24,2 +rrF  ( )88,34 ++ rrF  and ( )128,54 ++ rrF  of the 

Fibonacci groups ( )nmF ,  to be infinite by defining Morphism between Dihedral 

groups and the Fibonacci groups.
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CHAPTER ONE 
INTRODUCTION 

1.1 INTRODUCTION 

 The main aim of this chapter is to highlight a few concepts which are 

fundamental for the understanding of semigroup, group and combinatorial 

theoretical concepts. The results therein form the background of the study, 

which spell out the statement of the problem, objective and justification of the 

study. 

Let { }nn xxxX ,,, 21 …=  be a finite set, a permutation on nX  is a one-to-

one mapping of nX  onto itself. The set of all permutations on n  elements is 

denoted by nS  called symmetric group of degree ,n and of order !n . The group 

nS consists of both even and odd permutations depending on the length the 

permutation, even or odd. The set of all even permutations on nX  forms a 

group called the alternating group ( nA ). Another subgroup of nS comprising of 

both even and odd permutations is called the Dihedral group such that for all 

, ,nx y S∈   2 1, 1,n
nx y D iff x y xy y x−∈ = = = . 

The arrangement of elements of the Alternating or Dihedral groups 

according to specified rule (the number of fixed points) is of particular interest. 

First, how many of such arrangements are possible and what is their recurrence 

and generating functions.  

Another group which has similar structure to the dihedral group is the 

Fibonacci 1 2 1 1 2 3 2 3 4 1 1( , ) : , ,n n n nF r n a a a a a a a a a a a a a− −=< = = = >  where r  is the 
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number of relations and n  is the number of generators, for what value of 

&r n is the group finite or infinite. 

1.2 BACKGROUND OF THE STUDY 

Let { }nX n ,,2,1 …=  be a finite n -element set and let ,nP  ,nO  ,n n nS D and A  

be the partial transformation semigroups, the submonoid of nT  consisting of all 

order preserving mappings of nX , the symmetric, dihedral and alternating 

groups respectively. The combinatorial properties of  nS  have been studied 

over long period and many interesting results have emerged. In particular, the 

number of permutations of nX  having exactly k  fixed points and their 

generating functions are known. 

The Dihedral group nD ,  geometrically consists of all symmetries of a 

regular gonn−  ),3( ≥n  that is, n  rotations through the angles 

x
n

360 )1,,2,1,0( −= nx …  and n  reflections through each of the n  lines of 

symmetry of the regular n -gon. Algebraically, each element of nD  is either 

cyclic (preserve orientation) or ant-cyclic (reverse orientation). Catarino and 

Higgins (1999) introduced a new subsemigroup of nX  containing nO  which is 

denoted by nOP  and its elements are called orientation preserving mappings. 

Also, they introduced a Semigroup nnn OROPP ∪=  where nOR  denotes the 

collection of all orientation reversing mappings. They showed that the 

Dihedral Group is the maximal sub-Semigroup of .n n nP OP OR= ∪  Fernandes 

(2000) studied the monoid of orientation preserving partial transformations of 
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a finite chain, concentrating in particular on partial transformations which are 

injective. However, the algebraic proof (along the lines of Catarino and 

Higgins (1999)) and the geometric proof, for the number (and properties) of 

even and odd permutations having exactly k  fixed points in the Dihedral group 

nD  seem not to have been studied. 

The Fibonacci group ( )nF ,2  is the group defined by the Presentation  

  >====< − 211143232121 ,,:,, aaaaaaaaaaaaaaa nnnn  

The study of these groups began in earnest after a question of Conway (1965) 

as to whether or not ( )5,2F  is cyclic of order 11, and it was quickly determined 

in (Conway, et al, 1965)   that this was indeed the case, and also that ( )1,2F  

and ( )2,2F  are trivial, ( )3,2F  is the quaternion group of order 8 , ( )4,2F  is 

cyclic of order 5 , and ( )6,2F  is infinite. 

In a survey article Thomas (1989) gave a list of those parameters r  and 

n  for which the finiteness or infiniteness of the Fibonacci group ( )nrF ,  was 

still unknown. Since then, some of the unknown examples were proved infinite 

by Prishchepov (1998) using geometric methods, and some isolated difficult 

examples, such as ( ),7,4F  were proved infinite and automatic by computer 

programs written by Holt (1998), Christopher (1998), proved all of the 

outstanding cases except for two families of examples which were proved to 

be infinite by using geometric methods. The two families that remain unsettled 

are ( )5,57 iF +  and ( )5,58 iF +  for integers 0≥i . The methods also apply to 

those examples that had previously been handled by computers. All these 
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methods were not able to give a generalized result of testing the order of a 

Fibonacci group. 

1.3 STATEMENT OF THE PROBLEM 

Let  

( ){ }( , ) :ne n k A f kα α= ∈ =   

( ) ( ){ }, :ne n k A f kα α′ ′= ∈ =  

( )
0 !

i

i
i

xf x e
i≥

= ∑  

be the number of even (odd) permutations in the alternating group and the 

generating functions for the fixed points. How many even (odd) permutations 

( ( , )e n k ( ),or e n k′  ) of an −n element set having exactly k  fixed points are in 

the alternating group and what is the generating functions for the fixed points. 

Geometrically and Algebraically, How many even and odd permutations 

(of an −n element set) having exactly k  fixed points are in the dihedral group 

and what are the fixed points. 

 To study Alternating and Dihedral groups, let α  be a permutation of nX , 

and ( ),f m n be the number of permutations of nX  that can be expressed as a 

product of ( )1, 1, 2, , 1ir m i i m− + = −  cycles. How many such permutations are 

there in nX . 

The Fibonacci groups ( )nmF , defined as 

( ) >===< +−++ miaaaaaaanmF mimiiin ,,2,1,,,, 1121 ……  

for what value of m and n  is the Fibonacci group infinite or finite. 
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1.4 JUSTIFICATION OF THE STUDY 

Since the combinatorial properties of n nA and D  have not been studied, it 

is our desire to consider the number of even and odd permutations (of an 

−n element set) having exactly k  fixed points in the alternating & dihedral 

groups, the generating functions for the fixed points in the alternating group 

and the formulae for determining the fixed points in the dihedral group. 

Considering the combinatorial properties of the Dihedral group, we create 

morphism between the dihedral group and the Fibonacci group. The morphism 

will give us a new method of determining the finiteness or infiniteness of 

Fibonacci group. 

It is our hope that the combinatorial properties of these groups will help 

in studying the nature (structure) of other permutation groups, and it is our 

hope that the new method of studying the finiteness or infiniteness of 

Fibonacci group will help in the study of unsettled problems. 

1.5 OBJECTIVE OF THE STUDY 

The objective of this research is to  

1. Obtain the number of even (odd) permutations having exactly k  fixed 

points in the alternating group, discuss the fixed points and the generating 

functions for the fixed points. 

2. Give two different proofs one geometric and the other algebraic (in line 

with Catarino and Higgins 1999) of the number of even and odd permutations 

(of an −n element set) having exactly k  fixed points in the dihedral group. In 
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the algebraic proof, we further obtain the formulae for determining the fixed 

points.  

3. Prove the three families; ( ),24,2 +rrF  ( )88,34 ++ rrF  and ( )128,54 ++ rrF  

of the Fibonacci groups ( )nmF ,  to be infinite by defining Morphism between 

Dihedral groups and the Fibonacci groups. 

4. Obtain the number of permutations of nX  that can be expressed as a 

product of ( )1, 1, 2, , 1ir m i i m− + = −  cycles. 

1.6 BASIC SEMIGROUP THEORY  

 Throughout unless otherwise explicitly indicated, the letter S  denotes an 

arbitrary semigroup.  

 We call an algebraic structure ( ),S  that satisfies the closure property a 

groupoid, that is to say, if,  .,, SyxSyx ∈∈∀   A semigroup S  is a groupoid 

with an associative binary operation, that is to say, if  

  ,,, Szyx ∈∀   ( ) ( ) .zyxzyx =   

  If a semigroup S  has the property that, for all  ,, Syx ∈  yxxy = , we say 

that S  is a commutative semigroup. If a semigroup S  contains an element 1 

with the property that .11, xxxSx ==∈∀  We say that 1 is an identity 

element of ,S  and that S  is a semigroup with identity or a monoid. A 

semigroup S  has at most one identity element. If S  has no identity element, 

then an extra element 1 can be adjoined to S  to form a monoid. We define  

SSS 11 ==   and ,111 Ss∈∀= thus { }1∪S  is now a monoid. We refer to  
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{ }1 1S S= ∪   as a monoid obtained from S  by adjoining an identity element if 

necessary.  

 If a semigroup S  with at least two elements contains a unique element 0  

(zero) such that, ,000, ==∈∀ xxSx  we say that 0  is a zero element (or just 

a zero) of S  and S  is a semigroup with zero. If S  has no zero element, then an 

extra element 0  can be adjoined to ,S  we define 0 0 0S S= = and 000 =  

.Ss∈∀   We refer to { }00 ∪=SS  as a semigroup obtained from S  by adjoining 

zero if necessary. A semigroup with zero, sometimes written as S0 such that 

Syxxy ∈∀= ,0  is called a null semigroup. A semigroup with zero is called a 

0  group if and only if  { }0\Sa ∈∀  SaS=   and  .SSa=  

 A non-trivial example of semigroup are the so called left (right) zero 

semigroups. A non-empty set L such that  ,,, aabLba =∈∀   is called a left 

zero semigroup. Similarly, we define a right zero semigroup R  such that 

.,, babRba =∈∀  Observe that for all a  in L(R) we have aaaa ==2  such 

elements are called idempotent. A semigroup consisting entirely of idempotent 

elements is called a band (or Idempotent semigroup).  

 A non-empty subset SofA  is called a subsemigroup if it is closed with 

respect to multiplication, that is, if AabAba ∈∈ ,,  a condition that can be 

expressed more compactly as 2 .A A⊆ The associative condition that holds 

throughout S  certainly holds throughout A  and so A  is itself a semigroup. The 

sets ,S  { } { } { }eand1,0  are special subsemigroups of .S  
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 A non empty subset A  of S  is called a left Ideal if ,SA A⊆  a right ideal, 

if ,AS A⊆  and two sided if it is both a left and a right ideal. Every ideal is a 

subsemigroup, but the converse is not true.  

1.7 MONOGENIC (CYCLIC) SEMIGROUP 

 The concept of a cyclic semigroup is similar to that of group theory. Let 

S  be a semigroup, and let { }IiUi ∈:   with  0≠I  iIi
UT

∈
∩=≠φ   is a subsemigroup 

of .S  Let A  be a non empty subset of ,S  there is at least one subsemigroup of 

S  containing ,A  namely S  itself. The intersection of all subsemigroups of S  

containing ,A  is a subsemigroup of S  we denote it by A , and is a 

subsemigroup defined by two properties.  (1) ( ).JjAA j ∈⊆  (2) If U  is a 

subsemigroup of S  containing ,A  then jUA =>< for each j .   

 The subsemigroup A  consists of all elements of S  that can be 

expressed as a finite product of elements of  .A  If  ,SA =  we say that A  is a 

set of generators or a generating set of  S .  

 If A  is finite, i.e. { }.,,,, 321 naaaaA …=  Then we shall write A  

as naaa ,,, 21 … . In the case where { },aA =  a singleton set, when  

}.,,,{ 32 aaaa =><  If S  is a monoid then we can equally talk of the 

subsemigroup of S  generated ,a  this will always contain 1, 

}.,,,1{ 3
,

2 aaaa =><   we refer to a  as a monogenic subsemigroup of S  

generated by the element .a  The order of  a  is the order of the subsemigroup  

a .  
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 If  S  is a semigroup in which there exist an element a  such that 

,><= aS  then S  is said to be a monogenic semigroup. A semigroup with only 

one generator is referred to as cyclic. 

1.8 ORDERED SETS, SEMILATTICES AND LATTICES 

 A binary relation ≤  on a set X  is called a partial order relation if the 

relation ≤  is an equivalence relation on X . 

 A partial order having the extra-property that for all ,, Xyx ∈  

xyoryx ≤≤  will be called a total (or linear) order. A set with total order will 

be called a totally ordered set (or chain). A set with a partial order is called a 

poset. 

1.9 GREEN’S EQUIVALENCE: REGULAR SEMIGROUP 

In 1951, J.A. Green defined five equivalences .,,,, JandDRKH  

These equivalences play a fundamental role in the semigroup theory. 

Green’s Equivalences: Let a  be an element of a semigroup .S  The smallest left 

ideal of  S   containing an element a  is  { },aSa ∪   denoted by 1S a  and is called 

the principal left ideal generated by .a  An equivalence  L  on S  is defined by 

the rule that  bLa   if and only if bSaS 11 =  Similarly, we define the 

equivalence R  by the rule that bRa  if and only if  .11 bSaS =  

 An alternative (internal) characterization is; 

  Let .,,, Sdcba ∈ Then  

(i) aybbaxSyxiffbLa ==∈∃ ,:, 1   

     abvbauSvuiffbRa ==∈∃ ,:, 1  
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(ii) RandL  are right and left congruence's respectively. 

 (iii) DRLandHRL =∪=∩  The smallest equivalence containing both 

.RandL  

 The equivalence J   is defined by the rule that  

 
.,,,,, 1

1111

aubvbxaySvuyx

SbSSaSbJa

==∈∃⇔

=⇒
 

 An element Sa∈  is called regular; if there exists Sinx  such that 

.aaxa =  Obviously, idempotents are regular. If every element of a semigroup 

S  is regular, we say that S  is a regular semigroup. 

 Groups are of course regular semigroups and also every rectangular 

band B  is trivially regular, since  aaxa =  for all xa,  in  B  

 Every idempotent e  in a semigroup S  is right identity for  Re (right 

regular D -class)  and a left identity for .eL (left regular D -class) An element 

'a  in S  is called an inverse of  a  if ., '''' aaaaaaaa ==  

An element with an inverse is necessarily regular, if 'a  is an inverse of 

a  then a  is an inverse of .'a  Every regular element has an inverse, if there 

exist x  in S   such that aaxa =  then, let  .,, ''''' xaxxaaaxxaxx ===  

An element a  in S  may have more than one inverse. Indeed, in a 

rectangular band every element is an inverse of every other element. 

1.10 BASIC GROUP THEORY 

 Throughout, unless otherwise explicitly indicated, the letter G  denotes 

an arbitrary group.  
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 Let G  be a non empty set, the algebraic structure ( ),G ∗  is called a group 

if;  

(i) G  is a semigroup with respect to ∗  

(ii) For all  GeGg ∈∃∈ such that  ,ggeeg =∗=∗  the element e  is the 

identity element of .G  

(iii) To every element ,Ging there exist a unique element Gg ∈−1  called the 

inverse of Ging  with the property that .11 egggg =∗=∗ −−  

 Henceforth, unless otherwise explicitly indicated, our groups are 

multiplicative. If H  is a subset of a group G  such that the group operation of 

G  is closed on H , then H  is a subgroup of G  and we write ,GH ≤  we state 

that  H   is a subgroup of  G   if  for all  1, , .x y H x y H−∈ ∈  

 If the element e  is the identity element of ,G  the set { }e  is the smallest 

subgroup of G  of order one. This and G  itself are called the trivial (improper) 

subgroups of  .G  Any other subgroup H  of  G  is said to be a proper subgroup 

of G . 

         We say that G  is commutative or abelian if every pair of its elements 

commutes, i.e. 21 , gg∀  in G .  ,1221 gggg =  otherwise it is non-abelian. By the 

cardinality of G  we mean the number of elements of the set G  which we 

called the order of G  and is denoted by G  or ( ).Go  

 The order of an element Gg ∈  is the least positive integer n , if one 

exists, such that  ,ean =  then g  is said to be of order n , if no such n  exist, 

then g  is said to be of infinite or zero order.  
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 Let Gg ∈ , if the group G  can be generated by an element  Gg ∈   such 

that  { }+Ζ∈= ngG n :   then  G   is said to be a cyclic group generated by g, and 

written as  .Gg =   If g generates G  then so is ,1 Gg ∈−  and the order of  g  is 

equal to the order of .G  Thus, if the ( ) ( ) mgandnG == 00  Then m  and n  are 

relatively prime. 

 If ( ) ppG ,0 = a prime number, then G  is cyclic and has no proper 

subgroup.  

1.11 PERMUTATION GROUP 

 Let { }nn xxxX ,,, 21 …=  be a finite set of arbitrary elements, a permutation 

on nX  is a one-to-one mapping of nX  onto itself.  The set of all permutations 

on nX  forms a group with respect to permutation multiplication (composition 

of mappings). The set of all permutations on n  elements is denoted by 

( )nn XSymorS  and called the symmetric group of degree ,n  the degree of nS  is 

the number of elements in the finite set permuted. The number of elements in a 

permutation on n  elements is !n  and is the order of nS ).!..( nSei n =  A 

Permutation group G  is a subgroup of a symmetric group. Elements of 

permutation groups are denoted by lower case letters as well as elements of 

abstract groups.  

The inverse  permutation nS∈β  is given by ,1
nS∈−β  if β   takes y  

into x  and then 1−β  permutation  inverse of β  takes the point x  to ,y  

.1 yx =−β The identity permutation on nX  is the identity mapping which leaves 

all points of nX  fixed,  ( ) Gxxixxxi ∈∀=→: .  
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 Any element ( )n
g Sym X∈   can be written in ( ),.., 21 rxxxgeicycler …=−   

such that , mapped 21 xtoisx 32  mapped xtoisx 1−rx… 1 mapped is xtoxand r  and 

any other element of nX  to itself. The length of a cycle is the number of 

distinct elements (points) which occur in the cycle. 

 Each cycle can be decomposed uniquely into disjoint cycles. A cycle 

which interchanges only two points and fixes the rest is called a transposition. 

Every permutation can be written as a product of transpositions, 

( )( ) ( )nn yxyxyxg 2211= . 

 An element ( )nXSymg ∈  is said to be even if it can be expressed as a 

product of even number of transpositions and odd if it can be expressed as a 

product of odd number of transpositions. A −t cycle can be expressed as a 

product of 1−t transpositions; a −t cycle is an even permutation if it has odd 

length and is odd if it has even length. A transposition is odd while the identity 

element is even by convention.  

 The set of all even permutations on nX  forms a group called the 

alternating group and denoted by ( ) ( ){ }, : : : .x
n n nA A or A x A g Sym X g is even= ∈  

 We state that ( )
2
!2: nAorAXSym nn ==  and nA  is a normal subgroup of 

( )XSym . Two permutations nSinand βα  are conjugate in nS  if and only if 

they have the same cycle. The cyclic form of the permutations xgg 1−  is 

obtained by replacing each point α  in the cyclic form of x  by gα . Thus if 

( )( ) ( )( ) ( ) ( )( )7152481,2,3,8,7,5743152321578 1 ==== − ggggggxggthengx  
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1.12 TRANSFORMATIONS 

The analogue to the symmetric group nS  of all permutations of a set nX  is the 

full transformations semigroup nT  consisting of all mappings from nX  into nX . 

The operation in both cases is composition of mappings. Simple combinatorics 

yields  n
nn nTnS == !  

1.13 GROUP HOMOMORPHISM (SEMIGROUP MORPHISM) 

 Let Ψ  be a mapping from a set M  into a set N  denoted as 

( ): :M N or M M where m or mΨ → Ψ → Ψ Ψ Ψ  is the image of an element 

inΨ .  A homomorphism from a group M  to a group N  is a mapping 

NM →Ψ :  such that ( ) ΨΨ=Ψ 2121 mmmm  for all  ., 21 Mmm ∈  In that case Ψ  is 

said to preserve the respective operations in M  and .N  In the sense that if 

operation in M  and N  are  •  and ∗  respectively, then ( ) .2121 Ψ∗Ψ=Ψ• mmmm  A 

homomorphism of a group into itself is called an endomorphism. 

 Let NM →Ψ :  be a homomorphism of groups. We define the kernel of 

)ker( ΨΨ written  as { }ker : : 1m M mΨ = ∈ Ψ =  and it is a normal subgroup of M . 

The image of Ψ  is { }Mmmim ∈Ν∈Ψ=Ψ ::  is a subgroup of .N  The 1ker =Ψ  

if and only if the homomorphism Ψ  is a one to one mapping. Every 

homomorphism Ψ : NM →  gives rise to a natural factor group namely ker .G ϕ  

It can easily be verified that if N  is normal in ,M  then each factor group N
M  

gives rise to the natural homomorphism N
MM →Ψ :  defined by mNim =Ψ  for 

all .ker NwithMm =Ψ∈  
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 Let the mapping NM →Ψ :  be a bijective (one to one and onto) 

homomorphism, then MN →Ψ− :1  is also a homomorphism and Ψ  is said to 

be an isomorphism denoted as NM ≅ read as M  is isomorphic to .N  If 

,NM ≅ then the order of NandM is the same, and the identity Ne ∈′  is the 

image of identity .Me∈  

We state without proof the three main isomorphism theorems.  

1.13.1 The First Isomorphism Theorem 

If NM →Ψ :  is a homomorphism of groups then kerM imϕ ϕ≅ . 

1.13.2 The Second Isomorphism Theorem 

 Let M  be a subgroup of G  and N  a normal subgroup of .G  Then 

( ), .NM
MNM G N M M and M M N≤ ∩ ≅ ∩  

1.13.3 The Third Isomorphism Theorem  

 Let G  be a group. If N  is normal in G  and GMN ≤ , then  

( ) ( ) M
G

N
M

N
G

N
G

N
M and ≅/  

An isomorphism of a group G  into itself is said to be an automorphism 

of the group G . The mapping MM →Ψ :  given by mm =Ψ  for all ,Mm∈ is an 

automorphism  Miff  is an Abelian group. 

1.14 DIRECT PRODUCTS  

 Let M  and N  be any two groups, the (external) direct product of M  and 

N  denoted by NM × , is the set of ordered pairs ( ) ,,, NnandMmnm ∈∈  with 

coordinate wise multiplication  

 ( ) ( ) ( ) .,,,,,,, 212121212211 NnnMmmnnmmnmnm ∈∈=  
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 The unit element is  ( ),1,1  the inverse of ( )nm,  is ( )11 , −− nm . The new 

group is known as the direct product NM ×  and it is routine to verify the 

axioms of a group. 

 A group G  is said to be decomposable if its subgroups NandM  are 

such that every element of G  is expressible as a product mn  with 

;NnandMm ∈∈  every element of M  commutes with every element of N  

and .1=∩NM If not, it is said to be indecomposable. 

 The correspondence ( ) ( )mnnm ,, →  shows that MNandNM ∗∗  are 

isomorphic. Let NandM  be normal subgroups of G  such that ,NMG ∗=  the 

mappings MG →Ψ :  and NG →Φ :  defined by ( ) mnm →Ψ ,: and  

( ) nnm →Φ ,: ( ) Gnmallfor ∈,  then ΨΦ and  are surjective homomorphism 

called projection of NontoandMontoG  respectively. 

 We say that 1ker1ker ∗=Φ∗=Ψ MandN  if it is a subgroup of G  such 

that .NHandMH =Φ=Ψ In that caseG , is said to be the sub-direct product of 

NandM . 

1.15 COSET 

 Let H  be a subgroup of a group G  and .Ga ∈  The subset 

{ }HhhaHa ∈= ::  is called a right coset of H  in G  (or residue classes modulo 

the subgroup) generated by .a  Left cosets of H  in G  are defined in an 

analogous way. 
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 Any two left (right) cosets of H  in G  are either disjoint or identical. If 

,, Gba ∈ ,1 HabiffHbHa ∈= −  we say that a is congruent to ,mod Hulob  

symbolically, we write ( ) .mod 1 HabiffHba ∈≡ −  

 The relation, congruency, is an equivalence relation. Therefore, it 

partitions G  into disjoint equivalence classes. The equivalence classes 

corresponding to Ga∈  is defined as, [ ] { }HaxGxa mod≡∈= . The number of 

distinct right (left) cosets of H  in G  is called the index of H  in G , and will be 

denoted by  HG :  or [ : ]G H , if G  is a finite group we have ./: HGHG =  

 By Lagrange’s theorem, the order of a subgroup of a finite group G  

divides the order of the group, for which we can show that  
H
G

HG =:  

 Equally, the order of an element of a finite group divides the order of the 

group. 

1.16 Normal Subgroup  

 Let N  be a subgroup of a group .G  The subgroup N  is normal in G, 

denoted as ,GN  if and only if NggN =  for all g G∈  or 

equivalently GgallforNNgg ∈=−1 . The normalizer of H  in G  is denoted 

by ( ) { }HHGgHN g =∈=: { } GgHHgGg ≤=∈= . We call G  simple if its 

only normal subgroups are the trivial subgroups { } Gande . 

 If  H  is normal in G  then the set { }GggHH
G ∈=  is called the factor or 

quotient group of HbyG . The product on the set is defined by the rule  

  GggallforHggHgHg ∈= 212121 , .  
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The identity element of H
G  is HgandH 1−  is the inverse of .gH  

 Let Gag ∈,  the element aggaa =−1  is known as the conjugate 

of bgaaifabyg =−1 . Then b  is said to be conjugate to bandg  is also called 

the transform of ,abyg written as ~ .a b  The relation ~ partition G  into 

equivalence classes, and conjugate elements have the same order. We write 

( ) [ ]aoraC  for the set of all elements conjugate to Ga∈  called the conjugacy 

classes of .a  

 We defined the conjugate subgroups of G  as if NandM are two 

subgroups of a group  .G  In that case, N  is said to be conjugate to M  if there 

exist an element Gx∈  such that .1MxxN −=  

 If ,1MxxN −=  then N  is called the transform of  .xbyM  We write 

NifMN ~  is conjugate to .M  The relation ~ on the sets of subgroups of G  is 

also an equivalence relation as in elements in .G  

 The centralizer of Ging  is defined by  ( ) { }ggyyGggCG =∈= −1::  

 If the conjugacy class of g  consist of just ,g  then g  is known as a self 

conjugate element.  ( ) { }ggxxGxGggCG =∈∀∈= −1,  

There is a one-one correspondence between the conjugacy class of Ging  and 

the set of right cosets of the centralizer of G and ( ) ( )gCGglC GG :=  

  ( ) { }HhallforhxxhGxHCG ∈=∈=:  

  { } ( ){ }HxxCHxallforhhGx G
x ∈∩=∈=∈=:  

is a subgroup of  G . Indeed, ( ) ( ){ } .GHxxCHC GG ≤∈∩=  
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If GH =  then  ( )HCG   is called the centre of  G   and it is denoted as  ( ).GZ

 ( ) { }GxxggxGgGZ ∈∀=∈=:  

1.17 p  - GROUPS 

 Throughout this section, p -denotes a prime number.  

 Let G  be a group, such that every element of G  has prime power order 

for some fixed prime ,p  then G  is called a p -group. 

 Lagrange’s theorem assures that in a given group ,G  certain types of 

subgroups do not exist; it however, provides a necessary condition for the 

existence of a subgroup. In 1875 Sylow provides a sufficient condition for the 

existence in a group of subgroups of certain orders. Suppose H  is a proper 

subgroup of G  and ( ) pnnH <<= 1,0 , then n  cannot divide p . Thus a group 

of prime order can have no proper subgroup, e.g. the alternating group of 

degree ,4  4A  has no subgroup of order 6  although 6  divides  .12  

 Let G  be a finite group, such that spG r=  and r  a natural number 

where p  is a prime and ( ) .1, =sp  Each subgroup of order rp  in G  is called a 

Sylow p -subgroup of G  and if N  is any p -subgroup of G  then xNxH 1−⊆  

for some .Gx∈  

 We state without proof the three Sylow theorems. 

1.17.1 Sylow’s first theorem 

 Let G  be a finite non-abelian group and  ( ) .1, == mpandmpG r  Then 

for each  Ζ∈n   such that  rn ≤≤0 , G  has a subgroup of order .np  
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 Thus,  rpG =   for some r  if and only if the order of every element of G  

is a power of .p  

1.17.2 Sylow’s second theorem 

 In a finite group the Sylow p -subgroups (for a fixed prime p ) are all 

conjugate and are isomorphic. 

1.17.3 Sylow’s third theorem 

 In a finite group the number of Sylow p -subgroups (for a fixed prime 

p ) is congruent to 1 modulo .p   

1.18 GROUP ACTIONS ON GROUPS 

Let NandM  be groups. We say that M  acts on N  as a group if to each 

Mm∈  and each ,Nn∈  there corresponds a unique element Mm ∈  such that  

( ) ( ) mmmnnnn nnnniiimmiimmi 2121
1 )()()( 2121 === ∀ NnnnandMmmm ∈∈ 2121 ,,,,  

 Let M act on N  as groups, then for each ,Mm∈  there corresponds an 

automorphism NofNN m→Ψ :  and the mapping mM Ψ→Ψ :  is a 

homomorphism of ( )NAutooM int . We call Ψ  the automorphism 

representation of M  or simply action.  

1.19 BASIC COMBINATORICS 

 Combinatorics could be described as the art of arranging objects 

according to specified rule. We want to know, first, whether a particular 

arrangement is possible at all. If so, in how many ways can it be done?  

 Combinatorics depends on two elementary rules. (i) Disjunctive (or 

Sum) rule; if ( )kiEi ,,2,1 …=  are k  events such that no two of them can occur at 
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the same time, and if iE  can occur in in  ways, then one of the k  events can 

occur in knnn +++ …21  ways. (ii) Sequential or Product Rule; if an event can 

occur in m  ways and a second event in n  ways, and if the number of ways the 

second event occurs does not depend upon how the first event occurs, then the 

two events can occur simultaneously in mn  ways. More generally, if  

( )kiEi ,,2,1 …=  are k  events and if iE  can occur in 1n  ways, 2E  can occur in 2n  

and kE  can occur in kn  ways (no matter how the previous 1−k events occur), 

then the k  events can occur simultaneously in  knnnn …321  ways. 

1.20 THE BINOMIAL THEOREM 

Let n  and k  be non-negative integers, with .0 nk ≤≤  The binomial 

coefficient ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k
n  is defined to be the number of k − element subsets of a set of n  

elements. This numbers is often written as  k
nC  or ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
k
n  and read as n  choose .k  

It is called a binomial coefficient.  

( ) ( )
( ) ( )!!

!
11

11
knk

n
kk

knnn
k
n

−
=

−
+−−

=⎟
⎠

⎞
⎜
⎝

⎛
    

where, 1
0

=⎟
⎠

⎞
⎜
⎝

⎛n
 is the empty set and .1=⎟

⎠

⎞
⎜
⎝

⎛
n
n

 

1.21 PERMUTATIONS AND COMBINATIONS 

 The number of selections of k  objects from a set of n  objects where 

repetition is allowed and order is significant is given by .kn  If the order is not 

significant, it is given by .
1
⎟
⎠

⎞
⎜
⎝

⎛ −+
k
kn
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 If the repetitions is not allowed and order is significant it is given by 

( ) ( )11 +−− knnn … . But if the order is not significant, it is given by .⎟
⎠

⎞
⎜
⎝

⎛
k
n

 

1.22 RECURRENCE RELATIONS AND GENERATING FUNCTIONS 

1.22.1 Recurrence Relation 

 If ,,,, 10 kaaa  is a sequence of real numbers such that there is an 

equation relating to the term ( )0nnanyforan ≥  to one or more of its 

predecessors in the sequence, then this equation is a recurrence relation obeyed 

by the sequence. For example, the sequence ,!2,!1,!0  satisfies the 

recurrence relation ( )11 ≥= − nnaa nn . 

 Conversely, given this relation and the initial condition ,10 =a  one can 

recover the entire sequence by iteration. 

( )[ ] ( )( )[ ] ( ) ( ) !11211 31 nnnannnanna nnn =−==−−=−= −−  

The recurrence relation; 

( )1 1 1 1 1n n n n ra c a c a c a f n− − −= + + + +  

In which,  ( )riCi ,,2,1 …=   are constants, with ,0≠iC  is called a linear 

recurrence relation with constant coefficients of order .r   

1.22.2 Generating Function 

The sequence of real numbers …,,, 21 aaao  and a dummy variable x , 

have ordinary generating functions as ( ) …+++= 2
210 xaxaaxg  and exponential 

generating function as  ( ) .
!2!1

2

210 …+++=
x

a
x

aaxG  
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1.23 SOME SPECIAL NUMBERS 

1.23.1 Bell Numbers 

 The Bell numbers nB is the number of partitions of an n -set or the 

number of equivalence relations on an n -set (if R  is an equivalence relation on 

,X  then the equivalence classes of R  form a partition of X and the converse is 

also true). 

The recurrence and generating functions for Bell numbers is given by  

∑
=

− ≥⎟
⎠

⎞
⎜
⎝

⎛
−
−

=
1

1,
1
1

k
knn nforB

k
n

B ,   1

0
, 1

!
x nn

n

Be x for n
n

∞
−

=

= ≥∑  

1.23.2 Fibonacci numbers 

In his book "Liberabaci" which appeared in 1202, the Italian 

mathematician Fibonacci gives this problem (the Rabbit Problem): 

How many pairs of rabbit can be produced from a single pair in a year if 

every month each pair begets a new pair which from the second month on 

becomes productive? 

Let us denote by ( )nF   the number of pairs after n  months starting from 

the beginning of a year. We see that in 1+n  months there will be ( )nF  pairs 

and as many more newly born pairs as there were at the end of the month ,1−n  

which is to say, ( )1−nF  pairs of rabbits. In other words, we have the recurrence 

relation 

( ) ( ) ( ) 1111 −+ +=−+=+ nnn FFFornFnFnF  

Since, by hypothesis, ( ) 10 =F  and ( ) .21 =F  
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We find, in succession, ( ) ,32 =F  ( ) ,53 =F  ( ) ,84 =F  etc. In particular, 

( ) .37712 =F  

The numbers ( )nF  are called Fibonacci numbers. 

Fibonacci sequence ,,8,5,3,2,1 …  is defined by the recurrence relation   

( ) ( ) 2121 −− +=−+−= nnnn fffornfnff   

Such that ( ) ( ) 110 == ff  

Thus, the ordinary generating function of Fibonacci sequence is  

 ( ) ( ) ( )∑ ∑ ∑
∞

=

∞

=

∞

=

−− −+−=
2 2 2

221 21
n n n

nnn xnfxxnfxxnf   

 The Catalan and Bell numbers are two important sequences of numbers. 

They have several, apparently accidental, common properties.  

1.23.3 The Catalan Numbers  

The Catalan Numbers are …,42,14,5,2,1 and appear in many guises. 

For example, in how many ways can sums of n  terms be bracketed so that it 

can be calculated by adding two terms at a time? (Five possibilities) 

 The recurrence relations for the Catalan numbers is given by 

 ∑
−

=
− >=

1

1

.1,
n

i
inin nCCC  

Here ( )niCn ≤≤1  is the number of ways of bracketing a sum of n  terms. 

The Catalan numbers nC  is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
1

121
n

n
n

Cn , 

The generating functions for Catalan numbers is given as  

  0 1 1 2 2( )C x C C x C x= + + +  
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1.23.4 Sterling Numbers 

 Let kandn  be positive integers with ,nk ≤  the sterling number of the 

first kind, ( )kns ,   is defined by the rule that ( ) ( )knskn ,1 −−  is the number of 

permutations of { }n,,2,1 …  with k -cycle.  

 The sterling numbers of the second kind ( )knS ,  is the number of 

partitions of { }n,,1 …  with k  (non-empty) parts. 

 The recurrence relation is given by ( ) ( ) ),(1,,1 knnSknSknS −−=+  such 

that ( ) ( ) .01,0, nallfornSnS ==  

1.23.5 Proposition  

( ) ( ) ( )∑∑
==

− ==−
n

k

n

k

n nknSknSa
11

1 ;!,,1)( ( )∑
=

=
n

k
nBknSb

1
,,)(  thn Bell numbers. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1,,,1,1,,,1,1,, −+=+−+−=+== knSknkSknSandknSknnSknSknSnnS  

1.24 DERANGEMENTS 

A derangement of { }n,,2,1 …  is a permutation of this set which leaves no 

point fixed. Let ( )nd  be the number of derangements of { }n,,1 … . Any 

derangement moves the point n  to some point i n<  (fixed no point of n ). 

Thus, ( )nd  is given as three terms recurrence relation. 

( ) ( ) ( ) ( ) ( ) ( ) 01,10.211 ==−+−−= ddndndnnd . 

( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= ∑

=

n

i

i

i
nnd

0 !
1!   

This is the nearest integer to ,1!
≥nfor

e
n where e  is the base of natural 

logarithms.  
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CHAPTER TWO 
LITERATURE REVIEW 

2.1 TRANSITIVE PERMUTATION GROUPS 

 Let G  be a permutation group on Ω  and Δ  a subset of Ω , Δ  is said to 

be a fixed block of G  if G Gor φΔ = Δ Δ∩Δ ≠ . 

 The union and intersection of any two fixed blocks is a fixed block. 

Every group ΩinG  has two trivial fixed blocks Ωandφ  

2.1.1 Orbit 0f Ginα  

The fixed block φΔ ≠  is called an orbit or set of transitivity of G  on ,Ω  

denoted by ,GorG αα  where Gα  is defined as  

 { } Ω∈∈= ααα ,: GggG  

 A group G  acting on a set Ω  is said to be a transitive permutation group 

if it has only one orbit i.e. Ω=Gα .Thus, for all Ω∈βα , there exists Gg∈ such 

that .βα =g  A group which is not transitive is called intransitive. A group  G  

acting transitively on a set Ω  is said to act regularly if 1=Gα   for each ,Ω∈α  

that is only the identity fixes any point.  The number of elements in Gα  is 

called the length of the orbit. 

 A relation Ωin~  defined by the rule, ,~ Ggg ∈∀=⇒ βαβα  

Ω∈βα , βα =gwith  is an equivalence relation. 

 The orbits of G  partition Ω , for let SΔΔΔΔ ,,,, 321 …  be the orbits of 

ΩonG  then G  induces a permutation group ΩG  on Δ  and Δ  is a disjoint 
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union of orbits ∪
s

i
I

1=

Δ=Δ . Moreover, ∏
=

Δ≤
s

i

IGG
1

 and we say that G  is a direct 

product of the groups  SGGG ΔΔΔ ,,, 21 … . If also, each ( ).,,2,1 siG I …=Δ  is 

isomorphic to a group H  (possibly GH ≤ ). We say that G  is a sub-direct 

product of H . 

 A subset ΩΔ of  is said to be −G invariant if for all Δ∈∈ β,Gg  and 

g sβ =  implies Δ∈gβ  

2.1.2 Some Properties of Orbits GinGα  

1. Each point Ω∈α  lies in exactly one orbit GGof β=ΔΔ , . 

2. Two points α β≠  lies in the same orbit Gβ  if and only if gβα =  for 

some Gg ∈ . 

3. Let , . , . .G G G G GIf then Otherwiseα β β α α β β α φ∈Ω ∈ = ∩ = . 

4. A non-empty subset ΩΔ of  is an orbit iff  it is a minimal −G invariant 

subset.  

5. Any G  invariant subset of Ω is a disjoint union of orbits.  

2.1.3 Stabilizer of GinΩ∈α  

Let Gg ∈  and .,Ω∈α the stabilizer of ,Ginα  denoted as αG  is defined as  

 { }ααα =∈= gGgG  

The set of elements of  G  which fix a specified point .Ωinα . 

2.1.4 Some Properties of GinofG αα ,  

1. The stabilizer GinofG αα  is a subgroup of .G  
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2. αα GGG :=  where Gα  is the orbit containing αα GG :,  is the index of 

GandGinG ,α  is transitive, then :G n G Gαα = Ω = =  

3. Let ., 1
αααα GhkiffthenGkhand kh ∈=∈Ω∈ −  

4. If βααβα GGthenGhh =∈Ω∈= ,,  implies that ,1
βα GhGh =−  

5. ,αα GGG =  nG = . 

2.1.5 The Transitive Constituents ΔG  

Let G  be a permutation group on ,Ω  ( ).Ω≤ SymG  We say that a set Ω⊆Δ  is a 

fixed block of G  or is fixed by G  if .φ=Δ∩ΔΔ=Δ GG or  

 Then each Gg ∈  induces a permutation on Δ  which is denoted by .Δg  

We call the totality of sg `Δ  formed for all Gg ∈  the constituent 

( . . ).G of G on e g G GΔ ΩΔ =  clearly, ΔG  is a permutation group on .Δ  

2.2 REGULAR AND SEMI-REGULAR GROUPS 

 A permutation group ΩonG   is called semi-regular if for each Ω∈α  

we have that .1=αG  

 Thus, a faithful setG −  is regular if it is transitive and only the identity 

of  G  has fixed points (that is 1=αG ) 

1. Every regular group is also semi-regular; subgroups and constituent of 

semi-regular groups are semi-regular. The identity element is semi-

regular. 

2. In semi-regular groups all orbits have the same length and the length is 

the order of ,G  for GthenGIfGG GG === αα αα 1. (Wielandt, 1964). 
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3. If a Semi-regular group G  of order n  has m  orbits then .nGm a =  

4. Caley Representation of a permutation Group .G  Every transitive 

Abelian   group is regular and G is its own centralizer.  

5. The centralizer of every semi-regular group is transitive. 

2.3 THE SUBGROUPS ( )ΔG   and  { }ΔG . 

 Let the group G  acts on a set ,Ω⊆ΔΩ and  we define the point wise  

stabilizer ( ) ΔΔ ofG  as 

 ( ) { }Δ∈∀=∈=Δ ααα gGgG :  

The set wise stabilizer of Δ  is defined as  

 { } { }:G g G gα αΔ = ∈ ∈Δ ∀ ∈Δ  

2.3.1 Some Properties of ( ) { }ΔΔ GandG  

(1) ( ) { }ΔΔ GandG  are subgroups of G . 

(2) ( )ΔG  is normal in G. 

(3) The factor group ( )ΔGG  is the group of permutations induced by    

ΔonG  

2.3.2 Burnside Lemma (wielandt, 1964) 

 Burnside found the number of orbits in the action of ,ΩonG  although 

the work originated from Cauchy in 1845 and Frobenius in 1887. 

 Let the group G  act on a finite set ,Ω  the number of orbits say Gofn  in 

the action of G  on a finite set Ω  is given by 

 ( ),1 ∑= tf
G

n   
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where ( )tf , is the number of points of G  fixed by α , ( ) { }ααα =Ω∈= gtf :  set 

of fixed points of .G   

 Let G  be a transitive permutation group on ,Ω  the number of orbits 

( ) ΩinGofn αα  is given by 

 ( ) ( )∑
∈

=
Gg

gf
G

n 21α  

and it is called the rank of the transitive group .ΩonG . If the permutation 

group G  is semi-regular then ( ) n
G

n
1

=α  

2.4 PRIMITIVE GROUPS 

A subset ΩΔ of  is said to be a set of imprimitivity (Blocks) if for each 

Gg ∈  either ΔΔΔ=Δ andor gg  are disjoint. The set  { }1   and the empty set  { }φ   

are called the trivial sets of imprimitivity. 

 Let G  be a transitive permutation group. If G  has only non-trivial 

blocks then G  is said to be an imprimitive group. Otherwise it is primitive on 

Ω .  

2.4.1 Some Properties of Primitive Permutation Groups 

1. If G=Ω  then G  is a trivial group. 

2. Every doubly transitive group G  is primitive. 

3. Let .1, >ΩΩ∈α  A transitive group ΩonG  is primitive if and only if 

αG  is a maximal subgroup of .G  

4. If G  is primitive on Ω   and ,Ω∈≠ βα  then either GorGG βα ≠  is a 

group of prime degree or equivalently ., βα GGG =  
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5. Every transitive permutation group of prime degree is primitive. 

2.5 MULTIPLY TRANSITIVE GROUPS 

 Let G  be a permutation group on Ω  and k  a natural number with 

Ω=≤≤ nk1 . We say that plykisG −  transitive or foldk −  transitive ( )Ωon  if 

for every two k  tuples kαα ,,1 …   and  kββ ,,1 …   of points of Ω  

( )jiforwith jiji ≠≠≠ ββαα , , there exists Gg ∈  which takes ii o βα int  

( )kIi ,,…= .  The transitive group introduced in 2.1 is the same as 1-fold 

transitivity. We call a group multiply transitive if it is at least 2-transitive. 

Every ( ) foldk −+1  transitive group is also foldk −  transitive. Every group 

having a foldk −  transitive subgroup is itself  foldk −  transitive. 

 Whereas there are numerous nontrivial doubly and triply transitive 

groups, only two nontrivial quadruply transitive and two nontrivial quintuply 

transitive groups are known (Mathew, 1861, 1873).Their degrees are 11, 23 

and 12, 24 respectively. It is not known if there are nontrivial foldk −  

transitive groups for 7>k (Dixon, 1996). 

2.6 CLASSIFICATION OF TRANSITIVE GROUPS 

 The problem of classifying subgroups of the symmetric group is one of 

the oldest problems of group theory; it is in fact the subject of the 1858 prize 

question of the Academic des sciences: Academic des sciences (1857): 

 By the beginning of the 20th century, a series of articles had appeared 

which classified the transitive groups up to degree 15. The classification for 

the higher degree culminates in the papers of Cole (1895), miller (1896, 1898) 
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and Kuhn (1904). A full history of these endeavors can be found in Short 

(1992, Appendix A, pp. 122-124). 

 With the advent of computers, starting in the early 1980’s the 

classifications up to degree 15 were redone by Butler and McKay (1983), 

Royle (1987), Butter (1993).  

 A complete list of these groups with names and properties can be found 

in Conwey et al. (1998). 

2.7 CLASSIFICATION OF PRIMITIVE GROUPS 

 The primitive groups up to degree 17 were already classified by Jordan 

(1872). Sims (1970) published a list up to degree 20 and later extended it up to 

degree 50. Solvable primitive groups of degree <256 were classified by Short  

(1992), Eick and Halfling (2003) classified all affine groups of degree up to 

1000. 

 The O’Nan-Scoh theorem, Scoh (1980) gave the classification of finite 

simple groups (Gorenstein,1982) essentially reduced the problem of 

classifying primitive groups to the  classification of maximal subgroups of 

simple groups and to the problem of classifying irreducible matrix groups. 

 Dixon and Martimer (1988) classified the non-affine primitive groups 

up to degree 999. This classification was made explicit by Thieben (1997), 

which also gives the non-soluble affine groups up to degree 255. The 

techniques used do not stop at this degree but should be able to classify 

primitive groups up to several thousands if such a classification was desired.  
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 In particular, a classification of transitive groups only needs to classify 

the imprimitive groups.  

2.8 CONSTRUCTING TRANSITIVE PERMUTATION GROUPS 

 Alexander Hulpke (1999) presented a new algorithm to classify all 

transitive subgroups of the symmetric group up to conjugacy. It has been used 

to determine the transitive groups of degree up to 30. 

 In his article, Hulpke described a method to construct the transitive 

groups of given degree n . That is to classify the transitive subgroups of nS  up 

to conjugacy. The algorithm has been used successfully to verify the lists of 

groups of degrees up to 15 and to construct the hitherto unclassified groups of 

degree 16-30. These calculations were done in computer algebra system GAP 

4(GAP, 2002). 

2.9 TRANSITIVE −p GROUPS OF DEGREE mp  

 Let p  be a prime number. The classification of transitive −p groups of 

degree ( )2≥mpm   when the group is abelian is well-known. 

 We state, without proof, the result in the Lemma which follows: 

2.9.1 Lemma (Audu, 1988b) 

 If ( )mπ  is the number of partitions of the natural number m  then there 

are, up to equivalence, ( )mπ  different  number of faithful transitive −p groups 

of degree mp  whose centre has order mp . 

 For non-abelian transitive −p groups of degree 2p , we have the 

following: 
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2.9.2 Theorem (Audu, 1988c) 

There are ( )12 −p  different −p groups of G  of order 2p . Two of these 

are Abelian of the ( )32 −p  non-Abelian Group, we have that ( )2−p  of them 

have exponent p  while the remaining ( )1−p  of them have exponent 2p . As 

such the groups are distinguishable by their exponent and order. 

 Apine, (2000) classified transitive and faithful −p groups of degree 3p  

whose centre is elementary abelian of rank two. 

2.10 CLOCKWISE (ANTI-CLOCKWISE) ORIENTATION 

           Let { }nX n ,,2,1 …=  be a set with standard ordering. A map 

nn XX →:α  is order decreasing if  ,xx ≤α   for all x  in nX . If αα yxyx ≤⇒≤ , 

then α  is said to be order preserving for all yx ,  in nX . Let ( )saaaA ,,, 21 …=  be 

a finite sequence from the chain .nX  We say that A  is cyclic or has clockwise 

orientation if there exist not more than one subscript i  such that 1+> ii aa  where 

1+sa  denotes 1a . We say that ( )saaaA ,,, 21 …=  is anti-cyclic or has anticlockwise 

orientation if there exists no more than one subscript  i  such that  .1+< ii aa  

Note that a sequence A  is cyclic if and only if A  is empty or there exist 

{ }1,,1,0 −∈ si …   such that ,121 isii aaaaa ≤≤≤≤≤≤ ++  is unique unless the 

sequence is a constant. 

2.10.1 Remark 

(i) Let A  be any cyclic (anti-cyclic) sequence. Then A  is anti-cyclic 

(cyclic) if and only if A  has no more than two distinct values. 

 If ( )taaaA ,,, 21 …=  is any sequence then we denote by τA  sequence  
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( ),,,,
11 aaa tt …−  Called the reversed sequence of A . 

(ii) Let ( )taaaA ,,, 21 …=  be any sequence from nX . Then A  is cyclic (anti-

cyclic) if and only if τA  is anti-cyclic (cyclic). 

(iii) If ( )taaa ,,, 21 …  is a cyclic (anti-cyclic) then, so is 

(a) The sequence. ( ) ( )rii iiiaaa
ri

<<<… 21,,,
21

 

(b) ( ) .1,,,, 1,11 tjallforaaaaa jtjj ≤≤−+ ……  

(iv) For non-constant αα ,nOP∈  is an order-preserving mapping if and only 

if αα n<1 . 

2.11 ORIENTATION PRESERVING (REVERSING) MAPPINGS 

Catarino and Higgins (1999) introduced a new subsemigroup of nX  

containing nO  which is denoted by nOP  and its element are called orientation 

preserving mappings.  Also, they introduced a semigroup nnn OROPP ∪=  where 

nOR   denotes the collection of all orientation reversing mappings. Fernandes 

(2000) studied the monoid of orientation preserving partial transformations of 

a finite chain, concentrating in particular on partial transformations which are 

injective. He study several structural properties of the monoids of all injective 

orientation preserving partial transformations on a chain .nPOPI  He establishes 

descriptions for the ideals and for the congruencies of these monoids and show 

that nPOPI  is a 2-generated semigroup, for all Ν∈n . He finally gives a 

presentation for these monoids. 

2.11.1 Orientation Preserving Mapping 

Let ,nT∈α  we say that α  is orientation-preserving mapping on  nX  if 

the sequence ),,2,1( ααα n  is cyclic. From 2.10 above, this sequence is then 
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cyclic with respect to k≤  for all 10 −≤≤ nk . The collection of all orientation-

preserving mapping on nX  will be denoted by .nOP  

2.11.2 Lemma (Fernandes, 2000) 

Let nOP∈α and ),,( 1 tbb  be a cyclic sequence of members of .nX  The 

sequence ( )αα tbb ,,1  is also cyclic. 

2.11.3 Remark 

Catarino and Higgins (1999) regarded the members of nX  as being 

placed clockwise around the circumference of a circle so that the integer i  lies 

between 11 +− iandi  (reduced modulo n ) any sequence of 3 distinct members 

),,( kji  is cyclic or anti-cyclic. Let ),,( kjiandOPn∈α  be any triple of 3 distinct 

members of nX . If the entries are distinct, then the triple ),,( ααα kji  defines 

the same orientation as ( )kji ,, .  

2.11.4 Lemma (Catarino and Higgins, 4.6, 1999) 

Every  nO∈α  has fixed point.  

Proof 

  Let  nO∈α  and { }.: αxxXxA ≤∈=  Note that AsoandA∈1  is not-

empty. Let .max Aa = Hence αaa ≤  as ,Aa∈ and ( )αα aaa ≤ as nOα∈ . 

Thus Aa ∈α and aa ≤α  by maximality of ,a  therefore αaa =  as required.  

2.11.5 Lemma (Catarino and Higgins, 4.7, 1999) 

Let kk afa=α  where nOf ∈  and .10 −≤≤ nk  Then )(αfx∈  if and only 

if .)( fFkx ∈−  In particular, if Hx∈ , then F φα ≠)( . 
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2.11.6 Remark 

Catarino and Higgins (1999) gave some results on the fixed point of ,nOP  

we list some of the results as in Lemma 4.7, 4.8 & theorem 4.9 of Catarino and 

Higgins (1999).  Let .nOP∈α  then; 

(i)  The diagraph of α  cannot have a non-trivial cycle and a fixed point. 

(ii) Let ,nOP∈α   the diagraph of α  cannot have two cycles of different 

length. 

(iii) Let nOP∈α  if ( ) φα ≠F  then the diagraph of α  is a forest and each 

component C  associated with α  is a fixed point of α  is an interval. 

(iv) Let ,nOP∈α  such that ( ) .φα ≠F  Let C  be any component of α , then 

,  CC ⊆α  there exist Xji ∈,  such that [ ] αandjic ,,=  restricted to c is an 

order preserving with respect to .1−≤i  

2.11.7 Orientation-Reversing Mapping 

Let nT∈α , we say α  is an orientation-reversing mapping on nX  if the 

sequence ),,2,1( ααα n  is anti-cyclic, the collection of all orientation-

reversing mappings on nX  is denoted by  .nOR  

 Let γγ ,nOR∈  is a reflection where by ( ).1 Xiini ∈−+→  

and ( ) ( )1,,1,,,2,1 …… −= nnnγγγ  for nOR∈γ  is anti-cyclic. 

2.11.8 Remark 

If γλ ΓΓ ,  are involutions in nT  which map nn ORontoOP and  

,nn OPontoOR then ( ) ( ) nnn OPOPOR == 22 , nnn OROPP ∪=  is a submonoid of nT  
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 { }2: ≤∈=∪ XOPOROP nnn α .  

2.11.9 Lemma (Catarino and Higgins, 5.2, 1999) 

Let nOP∈α  be such that ntsomefortX ≤≤= 3α  and ∞H  be the class H  

class containing ∞ . Then tH 2=∞  

2.11.10 Theorem (Catarino & Higgins, 5.9, 1999) 

For 3≥t  the maximal subgroups of no
tD are the dihedral groups of order 

t2 . 

2.12 COMBINATORIAL PROPERTIES OF TRANSFORMATION 

SEMIGROUPS AND SYMMETRIC GROUPS 

 Let the binomial coefficient ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
r
n  be denoted as ( )rnC , . Higgins (1992a) 

presented the following results 

( ) ( ) ( )
0

( ) , , ,
n

k

i c n k c m k c m n k for n m
=

= + ≤∑  

( ) ( )
0

( ) 2 , 2 2 , 4
n

n

k

ii c k k c n k n k
=

− − =∑  

∑
=

−− =
n

k
nknk CCCiii

1
1)(  

 Gomes and Howie (1987) were the first to study nPO  (excluding the 

identity map) and among other things they computed the order of nPO  as 

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

n

r
n r

rn
r
n

PO
0

1  

 However, from the computational point of view, this result is not 

satisfactory if one were to compute higher orders of nPO . In view of this, 
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Laradji and Umar (2007) computed the order of ,nn asPC γ  the double 

Schroeder number, also obtain the recurrence. 

( ) { }krDomPOkrnf n =∧=∈= )max(Im,, ααα  

They defined  ( )krnf ,,  in terms of nI  as 

( ) ( ){ }kfDomrimIor n =∧==∈= αααα :  

( )
⎩
⎨
⎧

>
=

=
00
01

,,
k
k

konf  

( )
⎩
⎨
⎧

>
=

=
00
01

0,,
r
r

rnf  

and ( ) ( )nr
r
n

rnf ≤≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 11,, ,  ( ) ( )0,,,, krknf

k
n

krnf −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= . 

We have ( ) 0,0
1

2
,, >≥⎟

⎠

⎞
⎜
⎝

⎛
−
−+

⎟
⎠

⎞
⎜
⎝

⎛
= knfor

k
rk

r
n

krnf  

 For a given (partial) mapping or transformation .: XXy →⊆α , we 

denote the set of fixed points by ( ) { }xxyxf =∈= αα :  its Domain αDombyY  

and its image set by .Imα  

Let ( )nnf ,  be the number of derangements of an −n element set, and it is 

well known that 

( ) ( ) ( ) ( )2,21,11, −−+−−−= nnfnnfnnnf ( ) ( )nnnnf 11,1 −+−−=
( )∑

=

−
=

n

k

k

k
n

0 !
1!  

with ( ) 1, =rnf . However, ( )rnf ,  may also be expressed as 

 ( ) ( )rnC
r
n

rnf ,, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  
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where ( )rnC ,  is the number of partial one to one mapping without fixed points 

and having a fixed domain, say 

{ } ( ) ( ) ( )nnfnncandncandXxxx nr ,,10,,,, 21 ==≤…  generally we have:  

2.12.1 Proposition (Laradji and Umar, 2004b) 

( ) ( ) ( ) ( )nrrnCrnrCrnC <≤−+−−= 1,11,1,  

( ) ( ) ( )∑
=

<≤
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
r

m

m

nr
mmr

mn
rrnC

0
0

!
1!,  

Laradji and Umar (2006) obtain the generating function na  of symmetric 

inverse semigroup, such that  

( )∑
=

−
−

=
n

m
mn

m

n m
na

0 !
1! λ , ( ) ∑

≥

−

−
==

0

1
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n

n x
e

n
xaxf . 

2.12.2 Proposition 

Let ( )xfk  be the exponential generating function for 

thena
k
n

a knkn −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=, ( ) ( )xk

exxf
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x
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−
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−
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1

2
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CHAPTER THREE 
RESULTS 

3.1 RESULT ONE 

SOME COMBINATORIAL PROPERTIES OF THE ALTERNATING 

GROUP 

Let { }nX n ,,2,1 …=  be a finite n -element set and let nnn AandIS ,,  be as 

defined, the combinatorial properties of  nS  have been studied over long period 

and many interesting results have emerged. In particular, the number of 

permutations of ( )nX  having exactly k  fixed points and their generating 

functions are known. 

In this section we obtain and discuss formulae for the number of even 

permutations (of an n -element set) having exactly k  fixed points. Moreover, 

we obtain generating functions for these numbers. We also obtain similar 

results for the number of odd permutations. 

We list some combinatorial results, (some may be found in chapter two 

and one), that we shall need later in our proofs. 

3.1.1 Result 

Let nd  be as defined. Then 

 
( ) ( )( ) ( ) 1,11

!
1! 0

0
121 =−+=+−=

−
= ∑

=
−−− dwherendddn

i
nd

n

i

n
nnn

i

n
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3.1.2 Result 

The principle of inclusion-exclusion says that  

 Suppose that nX  is some set of objects and P  is a set of properties. For 

,PR ⊆  let ( )RN =  be the number of objects in nX  that have exactly the 

properties in R  and non of the properties in ,PR ⊆  

N ( ) ( ) ( )∑
⊆⊆

= ≥−=
PQR

RQ QNR ,1   

3.1.3 Result 

Let nA  and n  are as defined in chapter one, then, 

( ) 10 1,2
2
! AAwherennAn ==≥= . 

3.1.4 Result 

Let ( ) ( )∑
≥

=
0

.
!
,,

n

nx
n

kndkxd Then ( )kxd ,  converges for 1<x  to the 

functions     ( )xk
ex xk

−

−

1!
. 

3.1.5 Corollary 

 Let  ( ) ( )∑
≥

=
0

.
!n

nx
n
ndxd Then ( )xd  converges for 1<x  to the function 

    ( )x
e x

−

−

1
. 

3.2 EVEN AND ODD PERMUTATIONS 

We defined the number of k  fixed points in an even permutation of n -

elements.  

  ( ){ },:),( kfAkne n =∈= αα      ( )1.3  
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where ( ) { }.: xxXxf n =∈= αα Then it is not difficult to see that 

( ) kne
k
n

kne
k
n

kne −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= )0,(, .     ( )2.3  

Thus to compute ( )kne ,  it is sufficient to compute  .)0,( nene =  However, note 

that ne  is the number of even permutations without fixed points; that is, the 

number of even derangements. Now we have 

3.2.1 Theorem 

Let ne  be as defined in (3.2). Then ,0,1 1 == eeo and for all ,2≥n  we 

have 
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n n
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Proof 

By the Inclusion-Exclusion Principle we see that 
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The number ne satisfies some recurrence similar to those of nd  in Result 3.1.1  
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3.2.2 Proposition 

Let ne  be as defined in (3.2) . Then 

( ) ( ) ( )( )

( ) ( )( )

1
1 2 0 1

1
1 0

( ) 1 1 1 , 1, 0;

( ) 1 2 1 / 2, 1.

n
n n n

n
n n

a e n e e n e e

b e ne n n e

−
− −

−
−

= − + + − − = =

= + − − + =

 

Proof 
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as required. 

 (b) As in (a) above, using Theorem 3.2.1 and algebraic manipulations 

successively we have  
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 as required. 

 We now turn our attention to finding the number of odd permutations 

with k  fixed points. Let  

  ( ) ( ){ },:, kfAkne n =′∈=′ αα     ( )3.3  

Then it is not difficult to see that  

  ( ) ( ) kne
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As in the even case above, to compute ( )kne ,′  it is sufficient to compute 

( ) .0, nene ′=′  Also, note that ne′  is the number of odd permutations without fixed 

points. That is, the number of odd derangements. We can certainly deduce 

results for ne′  in exactly the same manner as above; however, we shall take 

advantage of Theorem 3.2.1 and result 3.1.1, since it is clear that 
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Thus we have proved the following result 
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3.2.3 Theorem 

Let ne′  be as defined by ( )4.3 . Then 

ne′  = ( )∑
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3.2.4 Proposition 

Let ne′  be as defined in ( )4.3 , respectively. Then 
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Proof 

It follows directly from result 3.1.1 and proposition 3.2.2 

3.2.5 Proposition 

Let nn eande ′  be as defined in (3.1) and (3.3), respectively. Then 
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(a) Using Theorem 3.2.1 and algebraic manipulations successively we 

have 
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as required.  

(b) Using Theorem 3.2.1 and algebraic manipulations successively we 

have 
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as required. 

3.2.6 Remarks 

 The sequence ( )kne ,  and ( )kne ,′  with the exception of ( )0,neen =  are not 

yet listed in Sloane’s encyclopedia of integer sequence (N.J.A Sloane, 2005). 
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For some selected values ( )kne ,  and ( )' ,e n k  see Tables 1. ( )kne ,  and 2. ( )' ,e n k , 

respectively.
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1. ( )kne ,  

k 

 

n 

0 1 2 3 4 5 6 7  

( )∑ kne ,  

0 1        1 

1 0 1       1 

2 0 0 1      1 

3 2 0 0 1     3 

4 3 8 0 0 1    12 

5 24 15 20 0 0 1   60 

6 130 144 45 40 0 0 1  360 

7 930 910 504 105 70 0 0 1 2520 
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2. ( )kne ,′  

 k 

 

0 1 2 3 4 5 6 7  

( )∑ ′ kne ,  

0 0        0 

1 0 0       0 

2 1 0 0      1 

3 0 3 0 0     3 

4 6 0 6 0 0    12 

5 20 30 0 10 0 0   60 

6 135 120 90 0 15 0 0  360 

7 924 945 420 210 0 21 0 0 2520 

 

 n 
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3. ( )ne + ( )ne′ - nd  

n   ( )ne    ( )ne′     nd  ( )ne + ( )ne′ - nd  

0 1   0    1   0 

1 0   0    0   0 

2 0   1    1   0 

3 2   0    2   0 

4 3   6    9   0 

5 24   20    44   0 

6 130   135    265   0 

7 930   924    1854   0 

8 7413   7420    14833   0 

9 66752   66744    133496  0 

10 667476  667485   1334961  0 

11 7342290  7342289   14684570  0 

12 88107415  88107426   176214841  0 
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3.3 GENERATING FUNCTIONS 

3.3.1 Proposition 

Let ( )xf  be the exponential generating function for .ne  then using 

proposition 3.2.5, result 3.1.4 and algebraic manipulations successively we see 

that 
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3.3.2 Proposition 

Let ( )xfk  be the exponential generating function for 
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Proof 
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as required. 

3.3.3 Proposition 

 Let ( )xgk  be the exponential generating function for 
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Proof 

From the obvious fact that ( ) ( ) ( ),,,, kiekiekid ′+= result 3.1.4 and 

proposition 3.3.2 it follows that 
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hence the result follows.  

3.4 NUMBER OF PERMUTATIONS WITH A GIVEN CYCLE 

STRUCTURE 

 Let { },,,, 21 mnmn aaaX …=  where ,12 ≥≥ nandm then we immediately see that 

3.4.1 Lemma 

{ }nn aaaXLet ,,, 21 …= . The number of ways in which a permutation α  of 

{ }43214 ,,, aaaaX =  can be expressed as a product of two transpositions is 3. 

Proof 

( )( ) ( )( ) ( )( )324142314321 , aaaaandaaaaaaaa=α  

3.4.2 Lemma 

The number of ways in which a permutation α  of 6X  can be expressed 

as a product of three transpositions is 15  

Let the first transposition be ( )xa1  then { },,,,, 65432 aaaaax∈  and the other 

4 elements can be written as two transpositions in 3 ways. Then we have 15 

possible ways. 

3.4.3 Lemma 

The number of ways in which permutations nXof 2α  can be expressed 

as a product of n  transpositions is  
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( )
( )

( )2 ! 2 !
( , 2) .

2 2 2 4 2 2 !n

n n
f n

n n n
= =

⋅ − ⋅ ⋅
 

Proof 

The proof is by induction. If the first transposition is 

( ) { }naaaxxa 2321 ,,,, …∈  then there are ( )12 −n  possibilities for x . The remaining 

22 −n  elements can be expressed as a product of transpositions in 

( )( ) 135232 ⋅−− nn ways. Then we have ( )( )( ) 135232.12 ⋅−−− nnn  possible 

ways. 

3.4.4 Lemma 

The number of permutation α  of mrX that can be expressed as a product 

of  r m -cycles is ( )!( , ) .
!r

mr
f r m

m r
=  

3.4.5 Theorem 

Let α  be a permutation of ( ) ( ).1,,2,11, −=−+− micylclesimrwithX in  

the number of such permutations is 

( ) ( ) ( )∏
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=
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−
=

− 2
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121 !
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1
121 m

i
i

rm
rrr
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n
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Proof 

First note that ( ) nrrrmmr mm =+++−+ −− 1221 231 . Now choose 1mr  

elements from nX  to form 1r  −m cycles. This can be done in ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1mr
n  ways, and 

these 1mr  elements can be expressed as a product of 1r  −m cycles in 
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( ).,1 mrf  Next choose ( ) 21 rm −  elements from the remaining 1mrn −  elements to 

form the ( ) cyclesmr −−12 . This can be done in ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

2

1

1 rm
mrn  ways and these 

( ) 21 rm −  elements can be expressed as a product of ( ) cyclesmr −−12 , in 

( )1,2 −mrf  ways. We continue in this way until we reach the last 12 −mr  

elements which can be expressed as a product of ( )2,2 11 −− − mm rfincyclesr  

ways. Multiplying all the possibilities gives 

( ) ( ) ( ) ( ).2,
2
2

1,
1

., 1
1

1
2

2

1
1

1
−

−

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
m

m

m rf
r
r

mrf
rm

mrn
mrf

mr
n   

This simplifies to the required result by using Lemma 3.4.4 and 

algebraic manipulations. 

3.5 RESULT 2 

SOME COMBINATORIAL PROPERTIES OF THE DIHEDRAL 

GROUP  

We investigate certain combinatorial properties of the Dihedral group 

,nD  we give two different proofs of the main result; one geometric and the 

other algebraic.  We now consider the geometric approach. 

First, recall that the dihedral group nD   consists of all symmetries of a  

regular gonn−  ),3( ≥n  that is, n  rotations through the angles 

x
n

360 )1,,2,1,0( −= nx …  and n  reflections through each of the n  lines of 

symmetry of the regular n -gon. 
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We shall denote the set of rotations and reflections by nRot  and nfRe , 

respectively. 

Next we establish a sequence of results that will lead to the proof of the 

main result. 

3.5.1 Results 

nRot  is a cyclic subgroup of  nD , in fact  nRot  = <α >,  where  ( )n21=α   

is the first rotation through angle  
n

0360 ,  in a clock-wise direction (same 

direction as the labeling of the corners of the regular −n gon). 

3.5.2 Result 

If n  is odd,  .n nRot A≤ . 

Proof 

If n  is odd,  ( )n12=α   is a cycle of odd length and α  and all its 

powers are even permutations. 

3.5.3 Result 

For all α  in nRot ,  ( ) 0=αf ,  except the identity e   for which  ( ) nef = . 

3.5.4 Result 

If n  is even, there are exactly  
2
n   even permutations and exactly  

2
n   

odd permutations in nRot . 

Proof 

If n  is even, then  ( )n12=α   is a cycle of even length and so 
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153 ,,,, −nαααα  are all odd permutations, while nααα ,,, 42  are all even 

permutations. 

To obtain the corresponding results for  ,Re nf   we observe that if n  is 

even then there are two types of lines of symmetry (of the regular n -gon):  one 

through the midpoints of a pair of opposite sides and the other through a pair 

of opposite vertices. The former gives rise to 
2
n  derangements while the latter 

gives rise to  
2
n   permutations each having exactly two fixed points. 

And if n  is odd, all lines of symmetry are through a vertex and the 

midpoint of its opposite side. This gives rise to n  permutation each having 

exactly one fixed point. Thus we have: 

3.5.5 Result 

If n  is even, there are exactly  
2
n   derangements and  

2
n   permutations 

each having exactly two fixed points, in .Re nf  

3.5.6 Result 

If n  is odd, ( ) 1=αf  for all α  in nfRe . 

3.5.7 Result 

If ,4kn =  there are exactly 
2
n  even derangements and exactly 

2
n  odd 

permutations each having exactly two fixed points in nfRe . 

Proof 

For the even derangements we consider reflections through the 

midpoints 
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of a pair of opposite sides, which give rise to  kk 2
2

4
=   transpositions (an even 

number of transpositions). 

For the odd permutation each with two fixed points, we consider 

reflections through the other type of line of symmetry, which give rise to  

12
2

24
−=

− kk  transpositions (an odd number of transpositions). 

3.5.8 Result 

If ,24 += kn  there are exactly  
2
n   odd derangements and exactly  

2
n   

even permutations each having two fixed points in nfRe . 

Proof 

This is similar to that of Result 3.5.7, above. Two further results whose 

proofs are similar to that for Result 3.5.7 above are. 

3.5.9 Result 

If  ,14 += kn   then there are n  even permutations each having a unique 

fixed point in nfRe . 

3.5.10 Result 

If  ,34 += kn   then there are n  odd permutations each having a unique 

fixed point in .Re nf  

3.6 NUMBER OF FIXED POINTS 

Now as in the Alternating group, we define equivalence on nD  by the  

equality of number of fixed points and consider: 

{ }( , ) ( ) . (3.5)nf n k D f kα α= ∈ =  
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Then it is clear that 1),( =nnf  since the identity permutation is the only one 

with n  fixed points. 

3.6.1 Proposition 

Let ),( knf  be as defined in (3.5). 

Then we have 

( )
1, ,

( , 0) 3 1, .
2

n if n is odd
a f n n if n is even

−⎧
⎪= ⎨

−⎪⎩

 

( )
⎩
⎨
⎧

=
.,0
,,

)1,(
evenisnif
oddisnifn

nfb  

( )
0, ,

( , 2)
, .

2

if n is odd
c f n n if n is even

⎧
⎪= ⎨
⎪⎩

 

( ) .0)1,()4,()3,( =−=== nnfnfnfd  

Proof 

(a) If n  is odd, there are 1−n  derangements from nRot , by Result 3.5.3 

and there are no derangements from nfRe , by Result 3.5.6. 

If n  is even, there are again 1−n  derangement from nRot  by Result 3.5.3 

and there are 
2
n  derangements from nfRe , by Results 3.5.3. The proofs for (b) 

and (c) are similar to that for (a) above. 

(d) This result follows directly from (a), (b) and (c) together with the 

fact that ( ) 1n n, =f  
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3.7 EVEN AND ODD PERMUTATIONS 

Let { } )6.3()(:),( kfADkne nn =∩∈= αα  

Then clearly we see that  .1),( =nne   Less obvious is the following result. 

3.7.1 Proposition 

Let ( , )e n k be as defined in ).6.3(  

Then we have 

( )

⎪
⎪
⎩

⎪⎪
⎨

⎧

−

+=−

−

=

.,1

,24,1
2

,,1

)0,(

othewisen

knifn
oddisnifn

nea  

( )
⎩
⎨
⎧ +=

=
.,0

,14,
)1,(

othewise
knifn

neb  

( )
⎪⎩

⎪
⎨
⎧ +=

=
.,0

,24,
2)2,(

othewise

knifn
nec  

( ) .0)1,()4,()2,( =−=== nnenened  

Proof 

( )a If n  is odd, then there are  1−n   even derangements, by Results 

3.5.2 and 3.5.3, all from .nRot  Note that there are no derangements from nfRe  

by Result 3.5.6. 

If  ,24 += kn   then there are  1
2
−

n   even derangements from  ,nRot   by 

Result 3.5.3 and Result 3.5.4. There are no even derangements if 4 2n k= +  

from  nfRe   by Result 3.5.8. 
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 Finally, if ,4kn=  then there are  1
2
−

n  even derangements from nRot , by 

Results 3.5.3 and 3.5.4. Moreover there are  
2
n  even derangements from nfRe , 

by Results 3.5.7. 

The proof for (b) and (c) are similar to that for (a) above, while (d) 

follows directly from proposition 3.6.1 (d). 

We now turn our attention to odd permutations. 

First, let 

( ){ } ( ).7.3),( kfADkne nn =−∈=′ αα  

Then it is clear that  

( )( , ) ( , ) ( , ). 3.8 .f n k e n k e n k′= +  

and since ),(1),( nnfnne ==  

It follows that .0),( =′ nne  In general, we have 

3.7.2 Proposition 

  Let ),( kne′ be defined as in ( )7.3 . 

Then we have 

( )

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+==′

.,
2

,24,
,,0

)0,(

otherwisen
knifn

oddisnif
nea  

( )
⎩
⎨
⎧ +=

=′
.,0

,34,
)1,(

otherwise
knifn

neb  

( )
⎪⎩

⎪
⎨
⎧ =

=′
.,0

,4,
2)2,(

otherwise

knifn
nec  
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( ) .0)1,()4,()3,( =−′==′=′ nnenened  

Proof 

 All the results follow directly from proposition 3.6.1 and equations ( )7.3  

and (3.8). 

3.8 THE SUBGROUP OF ORIENTATION PRESERVING 

(REVERSING) MAPPINGS 

Let nX  denote the set { }n,,2,1  considered with standard ordering and 

let nT , nP  and nO  be the full transformation semigroup, the partial 

transformation semigroup and the submonoid of nT  consisting of all order 

preserving mappings of nX , respectively. Another closely related algebraic 

structure to nO  and nP  are nS  and nD  the symmetric and dihedral groups on the 

set nX , respectively. 

Catarino and Higgins (1999) introduced a new subsemigroup of nX  containing 

nO  which is denoted by nOP  and its elements are called orientation preserving 

mappings. Also, they introduced a semigroup nnn OROPP ∪=  where nOR  

denotes the collection of all orientation reversing mappings. Fernandes (2000) 

studied the monoid of orientation preserving partial transformations of a finite 

chain, concentrating in particular on partial transformations which are 

injective. Here, we consider the subgroup of orientation preserving bijective 

mappings. In particular, we pay attention to a subgroup the Dihedral group nD  

of the order n2  defined as  { }yxxyyxyxD n
n

12 1,1, −==== . 
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We have in sections 3.5-3.7 give a geometric proof for the number of 

even and odd permutations having exactly k  fixed points in the Dihedral group 

nD . However, the algebraic proof of this result along the lines of Catarino and 

Higgins (1999) seem not to have been studied. 

At the end of this introductory section we gather some known results 

that we shall need in later sections. 

The semigroup of all order-preserving self maps of nX  consist of all 

maps nn XX →:α  with the property that αα yxyx ≤⇒≤ . A map α  is order 

decreasing if xx ≤α  for all x  in nX . Let ( )saaaA ,,, 21 …=  be a finite sequence 

from the chain nX . We say that A  is cyclic or has clockwise orientation if 

there exist not more than one subscript i  such that 1+> ii aa  where 1+sa  denotes 

1a . We say that ( )saaaA ,,, 21 …=  is anti-cyclic or has anticlockwise orientation 

if there exists no more than one subscript i  such that 1+< ii aa . Note that a 

sequence A  is cyclic if and only if A  is empty or there exist { }1,,1,0 −∈ si …  

such that iaaaaa isii .121 ≤≤≤≤≤≤ ++  is unique unless the sequence is a 

constant. 

3.8.1 Result 

Let A  be any cyclic (anti-cyclic) sequence. Then A  is anti-cyclic 

(cyclic) if and only if A  has no more than two distinct values. 

 If ( )taaaA ,,, 21 …=  is any sequence then we denote by τA  sequence 

( ),,,,
11 aaa tt …− called the reversed sequence of A . 
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3.8.2 Result 

Let ( )taaaA ,,, 21 …=  be any sequence from nX . Then A  is cyclic (anti-

cyclic) if and only if τA  is anti-cyclic (cyclic). 

3.8.3 Result 

If ( )taaa ,, 21 …  is cyclic (anti-cyclic) then so is 

(a) the sequence. ( ) ( )rii iiiaaa
ri

<<<… 21,,,
21

 

(b) and the sequence ( )111 ,,,,, −+ jtjj aaaaa …… , for all .1 tj ≤≤  

3.8.4 Result 

For non-constant αα ,nOP∈  is an order-preserving mapping if and only 

if .1 αα n<  

3.8.5 Result 

Any restriction of a member of nOPD  )( nORD  is also a member of nOPD  

)( nORD   

3.8.6 Result 

Let nOPD∈α and let ( ) 1,1 ≥maa m…  be any cyclic sequence of members 

of nX , then the sequence ( )αα maa …1  is also cyclic. Similarly 

( ) ( )( )ααααα ma …1 is cyclic. 

3.8.7 Result [11, lemma 4.8] 

Let nOPD∈α .Then the digraph of α  cannot have a non-trivial cycle and 

a fixed point. 
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3.8.8 Result [11, lemma 4.9] 

Let nOPD∈α . Then the digraph of α  cannot have two cycles of 

different length. 

3.8.9 Result 

The maximum subgroup of nD  is nOPD  and is cyclic of order n; nOPD  is 

a cyclic subgroup and every subgroup of nOPD  is also cyclic of order less than 

or equal to n .  

3.8.10 Result 

If n  is a natural number; then nOPD  is a subgroup of  nD    and  nORD  is 

an inverse of .nOPD   

3.9. SUBGROUP OF ORIENTATION PRESERVING MAPPINGS 

We shall give the algebraic proof of the results established in section 

3.5. We first consider the subgroup  .nOPD  

3.9.1 Lemma 

The set of all nOPD∈α  forms a cyclic subgroup of .nD  

Proof 

Every subgroup of a cyclic group of order less than or equal to the order 

of the group is a cyclic subgroup. Let ,nOPD∈α  by Result 3.8.5 and Result 

3.8.6 the sequence ( )ααα maaa 21  is cyclic and if nOPD∈τ  then  

( )ατατατ maaa 21  is also cyclic.  

3.9.2 Lemma 

Every nOPD∈α  is either a derangement or an identity. 
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Proof 

It is clear from Results 3.8.7 and 3.8.8 that every nOPD∈α  cannot have 

a non trivial cycle and a fixed point and the digraph of α cannot have two 

cycles of different length and lemma 3.9.1 implies the result. 

3.9.3 Lemma 

If n  is odd, the set of all  nOPD∈α   forms a cyclic subgroup of nA  of 

order .n  

Proof 

Since every, ( ) nOPDe ∈≠α  is a derangement, and α  is of odd length. 

Then every permutation of odd length is even and a product of even or odd 

number of even permutations is even. Hence nOPD  is a set of even permutation 

and Lemma 3.9.1 and { }evenisSA nn αα ∈=  implies the result. 

3.9.4 Theorem 

If n  is even, there are exactly 
2
n  even permutations and exactly 

2
n  odd 

permutations in nOPD . 

Proof 

Every n
m
n OPD∈α   1 m n≤ ≤   is defined as, 

( ) ( )
1

, 2
n

m
n

i

i m i i i m i m i n mα
=

= + = + + + −∏  

Let kT  be the length of one of the cycles of  m
nα  and ma be the number of 

disjoint cycles in m
nα . If n  is even we first consider even values of m , 

knm 2==  and then carry out the induction process of the proof. 
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First consider knm 2== , we have, 

Case I.  knm 2==  

( ) ( )1 1 1 2 1 3 1 1n n n n n nα = + + + + − = , 

implies that  nα  has n  fixed points. 

Case II. 2m n= −  

( )( ) ( )( )

( )( )

2 1 1 3 5 3 3 2 2 4 4 4

( 2) 2( 2) 3( 2) 2) 2

n n n n n n n n n n n

k k n k n k n n n k k

α − = − − − − − = − − − − =

+ − + − + − − − − = +

 

 To determine the nature of the permutation 2−nα , we only need to 

determine the length of one of the cycles in the product of disjoint cycles of

 2−nα . 

Now, let 

( )( )( )1 1 1 3 5 3T n n n n n= − − − − −  

be one of the cycles of 2−nα . 

=1T ( ) 213
n

nn
n

=
−−−

 

 Since by Result 3.8.8, any n
m OPD∈α  cannot have two cycles of 

different length in 2−nα , we can only have 
2
nn  cycles each of length 

2
n , which 

is a product of even number of odd (even) length cycles. Hence 2−nα  is a 

product of even number of even (odd) length cycles. 

Case III. 4−= nm  

( )( ) ( )( )8445117314 −−−−−−−−=− nnnnnnnnnnα  
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Then, the length of one of the cycles, says ( )( )5311 −−−= nnnT  of 

the permutation  4−nα   is 
4
n . 

By a similar argument as in case 1, we have ,44 =−nα  Thus for any 

value of n  the permutation 4−nα  is a product of four (even) numbers of even 

(odd) length cycles. Hence 4−nα  is an even permutation for 
4
n  even (odd).  

Case IV. We now consider a general case for kmnm −=  

{ }2,,4,2 −= nmk …  

=− kmnα ( )∏
=

++−+−+−
km

i
kkkk imimnimnimni

1

32  

Lets denotes one of the cycles of kmn−α  by KT ,  

=KT  ( )1131211 ++−+−+− kkkk mmnmnmn  

such that the length of kT  is  
k

k m
nT = . 

By similar argument as in cases I-III, for 
km

n  even (odd), the 

permutation kmn−α is a product of km  (an even number) of even (odd) length 

cycles. 

It is clear that for 2n k= there are 
2
n  even numbers and  

2
n  odd numbers. 

We conclude from case I-IV, that if 2n k= (even)and km 2= , then there are 
2
n  

even permutations. 
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We now pay attention to the remaining 
2
n  permutations. By a similar 

argument as in the case of km 2=  we consider, τmnm −= , τm  is an odd number,   

τm { }1,,3,1 −= n…  such that for any cycle, say,  τT  of τα mn−  we have nT
mτ

τ

= . 

Since n is even and τm  is odd we consider two cases: 

Case I. τm  does not divides .n  

Then τα mn−  is a cyclic permutation of length ,n  −n even. 

Case II. τm  divides n  

Let dmn τ= .Since n  is even and τm  is odd, then it is clear that d  is an 

even number. τα mn−  is a product of mτ  cycles each of length d , is a product of 

odd number of even length cycle. 

 Finally, we conclude that if n  is even, then for any value of m  satisfying 

case I & II mα  is an odd permutation, and there are  
2
n   sm `τ  in  n . 

3.10 SUBGROUP OF ORIENTATION REVERSING MAPPINGS 

 We can now give the algebraic proof of the results established in section 

3.5. We consider nORD . 

Throughout sections 3.10 and 3.11, , ,m n and k∈ Ν (set off natural 

numbers) ,kmn >>  ,
2

1
0

−
≤≤

m
k  and 0 2.m n≤ ≤ −  If 12 += km  then 

2
10 +

≤≤
mk and .20 −≤≤ nm  Let nORD∈ρ , we say ρ  is an orientation-

reversing bijective mapping on ,nX  if the sequence ),,2,1( ρρρ n  is anti-
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cyclic, the collection of all orientation-reversing bijective mappings on nX  is 

denoted by .nORD  

We define a reflection nm ORD∈ρ  by ( )1 1 ni i m i X→ − − + ∈  with 

0
: 1i n iρ ρ= → + −  such that ( ) ( )1,,1,,,2,1 −= nnnρρρ  and is anti-

cyclic. Thus, for every n
m OPD∈α  there exist an equivalence ρα m  in ,nORD . 

that is there exist an isomorphism between the subgroup nOPD  and nORD  

3.10.1 Lemma 

If  ,12 += kn  we consider two cases of ραρ m
m =  

(i)  If  ,2km =  mρ  has a fixed point at  
22

1 mn
i −

+
=  

(ii) If  ,12 += km  then mρ  ( )10 −≤≤ nm  has a fixed point at 1
2

mi n +
= −   

Proof 

We prove the assertions by induction on ,m  there are several cases to be 

examine. First recall that for all ,nm ORD∈ρ  

ραρ m
m =  = ( )∏

+

=

+−−
2

1

1

1,

n

i

imni   

Case 1. 0=m   ( 0=m  mod n ) 

( )∏
+

=
+−==

2
1

1
0 1,

n

i
iniρρ

 

 



 73

1
21

2
1

2
1

2
3

2
1

12
1

→
→−
→

+
→

+

+
→

−
→

−→
→

n
n

nn

nn

n
n

 

 

The fixed point is at  

 ( ) ( )0
1 10 1 1 , 0
2 2

i n i n m mρ → = − + ⇒ = − + =  

 ( )( )0
1 3 1 11 2 1

2 2 2 2
n n n nn nρ − + + +⎛ ⎞⎛ ⎞= − ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

Similarly, we consider the next even natural number, 2=m  

 ( )( ) ( )nnnnnnnn 1
2

3
2

1
2

1
2

132212 −⎟
⎠
⎞

⎜
⎝
⎛ −+
⎟
⎠
⎞

⎜
⎝
⎛ −−

−−=ρ  

2ρ  has a fixed point at  

 ( ) ( ) 2,1
2
1

12
2
1

=+−=⇒+−= mmnini  

Case 11, We now assume that the result holds for all values of m  up to k2 . 

 ( )122 +−−= kinikρ . 

( )( )

( ) ( ) ( )12
2

1122
2

1
2

1122
2

1

2
12

2
12

2
32

2
12122212

+−⎟
⎠
⎞

⎜
⎝
⎛ −−−+
⎟
⎠
⎞

⎜
⎝
⎛ +−−−

⎟
⎠
⎞

⎜
⎝
⎛ +−+−
⎟
⎠
⎞

⎜
⎝
⎛ +−−−

−−−=

knnknnknn

knknknknknknkρ

 

k2
ρ  has a fixed point at 
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 ( ) ( ) .2,1
2
112

2
12 kmmniknik =+−=⇒+−=→  

Case 111, finally, we consider the next even natural number after ,2k  

.)1(2 += km  

 
( )

( )12
12

−−−=
+

kini
k

ρ  

( ) ( )( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( )( )

2 1

2 1 1 2 1 1
1 2 1 2 2 1 1

2 2

2 2 1 3 2 2 1 12 1 1 2 1 3 1 1
2 2 2 2 2 2

k

n k n k
n k n k

n k n kn k n k n n

ρ +

− + + − + +⎛ ⎞
= − + − + − ⎜ ⎟

⎝ ⎠

⎛ ⎞⎛ ⎞− + + − + +− + − − + +⎛ ⎞ − +
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

The fixed point is at 

 ( )( ) ( ) ( )12,1
2
1

112
2
1

+=+−=⇒++−= kmmnikni  

The result is true for  ( ),12 += km  hence it is true for all −m even and −n odd. 

(ii).By a similar argument as in (i) above. Here, we consider .12, += knm  

  ραρ m
m =  = ( )

1
2

1

, 1 .

n

i

i n m i

+

=

− − +∏  

Case 1.  .1=m  oddn − . 

  ( )
1

2

1
1

n

i

i n iρ

−

=

= −∏  
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nn

n

n

n

→

→−

→

−→

−→

11

22

11

 

The fixed point is at 

 ( )11
2
1

 +−= ni    ( ) mnformmni >=+−=⇒ 1,1
2
1  

Since n  and m  are odd natural numbers and 0 1m n≤ < −  n -odd (the operation is 

orientation) we have ( , 2 ).
2
ni n n we have n n= = =  

( )( ) ( )( )nnn
nnnn

nn 11
2

3
2

3
2

1
2

1
22111 −⎟

⎠
⎞

⎜
⎝
⎛ −+
⎟
⎠
⎞

⎜
⎝
⎛ +−

−−=ρ  

Similarly, for oddn − , we consider the next odd natural number, 3=m   

( )( ) ( )( )211
2

7
2

3
42313 −−−⎟

⎠
⎞

⎜
⎝
⎛ −−

−−= nnnn
nn

nnρ  

The fixed point is at 

  oddnandmni −=
+

−= 3,
2

13
2
1  

by a similar argument as in the case of ,1=m  nn =
2
1  we have 

 ,3,
2

1
2

13
=

+
−=⇒

+
−= mmnini oddn − . 
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Case 11, we assume that the result holds true for all values of 2 1,m k= +  oddn − . 

 ( )
1

2
2 1

( 2 1)
1

, 2

n

k
m k

i

i n i kρ α ρ

−

+
= +

=

= = − −∏  

( )( ) ( )( ) ( )

( ) ( ) ( ) ( )

( )( ) ( )( )1122121

2
112

2
112

2
312

2
112

2
3)12(

2
1121122121)12(

++−++−−

⎟
⎠
⎞

⎜
⎝
⎛ ++

−
++

−⎟
⎠
⎞

⎜
⎝
⎛ ++

−
−+

−

⎟
⎠
⎞

⎜
⎝
⎛ ++−−+−

−+−+−=+=

knnknn

knknknkn

knknknknkmρ

 

Similarly, for 12 += km  the fixed point is at 

 ( ) ,12,
2

1
2

112 mnkmmnikni >+=
+

−=⇒
++

−=  oddn − . 

Case III. oddn −  and ,32 += km  the next odd natural number after .12 +k  

 ( )∏
−

=

+
+= −−−==

2
2

1

32
)32( 22,

n

i

k
km kiniραρ  

 

( )( ) ( )( ) ( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛ ++−−+−

−+−+−== +

2
332

2
132

132232132 knkn
knknk

m ραρ  

  

( ) ( ) ( ) ( )

( )( ) ( )( )1322321

2
132

2
132

2
332

2
132

++−++−−

⎟
⎠
⎞

⎜
⎝
⎛ ++

−
++

−⎟
⎠
⎞

⎜
⎝
⎛ ++

−
−+

−

knnknn

k
n

k
n

k
n

k
n

 

by a similar argument as in cases I-II the fixed point is at 
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 ( ) ,,32,
2

1
2

132 mnkmmnikni >+=
+

−=⇒
++

−= oddn − . 

The induction process proves that the result holds true for any value of 

.12 += km  

3.10.2 Lemma 

If n  is even, then we have two cases for mρ  

(i) If 2 ,m k= mρ  has no fixed point. 

(ii) If ,12 += km mρ  has two fixed points at  ( )1
2
1

+−= mni   and  
2

1+
−=

mni . 

Proof 

(i) For n -even we prove the assertion in a similar way we prove Lemma 

3.10.1, by considering 2m k=  and n - even.  

Case I. Consider  0=m   and .2  

 ( )∏
=

+−==
n

i

ini
1

0 1,ραρ  

 

1
21

22
2

2
2

2

2
4

2
2

12
1

→
→−
→

→
+

+
→

+
→

−
→

−→
→

n
n

nn

nn

nn

n
n
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If  i  is a fixed point, then 

 0
1

2
niρ +

→ =   

If 
2

1+
=

ni  is a fixed point, then it is clear that 1n+  is odd, since n  is even, it 

implies that 
2

1+
=

ni  does not exist in Ν  (set of natural numbers) or .ρ  Hence 

or otherwise, if 
2

1+
=

ni  is a fixed point, then, 10 ≠=→ ni  

 ( )( ) ⎟
⎠
⎞

⎜
⎝
⎛

+⎟
⎠
⎞

⎜
⎝
⎛ +−

−== 1
22

4
2

2
1210 n

nnn
nnρρ  

If  ,2=m  ( )1,2
2 −−== iniραρ  

If i  is a fixed point, then  
2

1−
=

ni , does not exist in Ν  (set of natural numbers) 

or .ρ  since, by similar argument as in  nm ,0=  is an even natural number; 1−n  

is odd  Ν∉
−
2

1n . If we assume that 1
2

1
−=

− nn   as in the other case, an odd 

number, that is 1−= ni  is a fixed point, it implies that  

  ( ) 111 −≠=−−−= nnnni  

Hence 2ρ  doesn't have a fixed point. 

 ( )( ) ( )1
22

2
2

2
2

4
32212 −⎟

⎠
⎞

⎜
⎝
⎛ −
⎟
⎠
⎞

⎜
⎝
⎛ +−

−−= nn
nnnn

nnρ  

Case II. Assume that the result is true for ,2km=  

 ( )12,2 +−−= kinikρ  

If  ( )12
2
1

+−= kni   is a fixed point, then it is clear that )12( −− kn  is odd, since 

n  is even and 12 −k  is odd. It implies that ( )
2

12 −− kn   does not exist in Ν  (set 
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of natural numbers) or .ρ  Hence or otherwise, if we assume that 

 ( ) ( ),12
2

12
−−=

−−
= knkni  

is a fixed point, then  

 ( )( ) ( )1212122 −−≠=+−−−−=→ knnkknnik  

( )( )

( )( )

2
2 2 21, 2 2 2 1

2 2

1 2 2 2 1

k
n k n kn k n k

n n k n n k

ρ − − +⎛ ⎞= − − − ⎜ ⎟
⎝ ⎠

− − + − +

 

 

Case III. ,)1(2 += km  the next even natural number after  ,2k  

 ( )
( ) ( )2 1

( 2 1) , 2 1k
m k i n i kρ α ρ+

= + = = − − −  

( ) ( )( ) ( )( )

( )( )( )

( 2 1) 1 2 1 2 2 1 1

2( 1) 2( 1) 2 1 2 1 2 2( 1) 1
2 2

m k n k n k

n k n k n n k n n k

ρ = + = − + − + −

− + − + +⎛ ⎞ − − + + − + +⎜ ⎟
⎝ ⎠

 )1(2,
2

1
2

1)1(2
+=

+−
=⇒

++−
= km

mn
i

kn
i  

does not exist as a fixed point in mρ , by a similar argument as in the cases I&II 

above 1+=mn  is odd, which implies that 
2

1+− mn   does not exist in 

( ))1(2 +=Ν kor ρ  Hence or otherwise, if 

 1
2

1
+−=

+−
= mn

mn
i  

then 

 ( ) 112112 +−≠=−−+−−=→+ mnnkmnnik  
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implies that 1)1(2 ++− kn  is not a fixed point. 

 The induction process proves that the result is true for any value of 

,2km=  n -even. 

(ii) If  n  even and 12 += km  then we consider various cases of m  in a similar 

way as in (i) above. 

Case 1. .1=m  

 ( )∏
=

−==
2

0

1
1 ,

n

i

iniραρ  

 

intsec
11

int
22

2
2

2
2

22
11

pofixedondtheisnn
n

pofixedfirsttheisnn

nn

n
n

→
→−
→

→

+
→

−
→

−→
−→

 

 

( )( ) ( )nnnnnnnn ⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛ +−

−−=
222

2
2

222111ρ  

2
n

i =  is the first fixed point of 1ρ  when n  is even and .12 += km  If one point is 

fixed, then we have 1−n  elements left. Since ,12 += km  then by a similar 

argument as in Lemma 3.10.1 for n and m  - odd. We have second fixed point 

at 
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 .1,
2

1
2

11
=

+
−=⇒

+
− mmnin  

Similarly, if  ,3=m  

 ( )∏
=

−−=
2

1
3 2,

n

i
iniρ  

( )( ) ( )( )3
3

2 2 41 3 2 4 1 1 2
2 2 2 2

n n n nn n n n n nρ α ρ − − −⎛ ⎞⎛ ⎞= = − − − − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

    ( )13
2
1

+−= ni  

is a fixed point. 

By a similar argument as in the case I above, the other fixed point is at 

 .3,
2

1
1

2
13

=
+

−=⇒−=
+

−= m
m

ninni  

Case II. .12 += km  

Let’s assume that the result is true for all values of m  up to .12 += km  

 ( )∏
=

+ −−=
2

1
12 2,

n

i
k kiniρ  

( )( ) ( )( )

( )

( )( ) ( )( )1122121
2

1)12(
2

1)12(

2
3)12(

2
112

2
1)12(

2
1)12(

2
3)12(

2
1)12(1122121

12

++−++−−⎟
⎠
⎞

⎜
⎝
⎛ ++

−
++

−

⎟
⎠
⎞

⎜
⎝
⎛ ++

−
−+

−⎟
⎠
⎞

⎜
⎝
⎛ ++−++−

⎟
⎠
⎞

⎜
⎝
⎛ ++−−+−

++−+−=
+

knnknnknkn

knknknkn

knknknkn
k

ρ

 

 12,
2

1
22

1)12(
+=

+
−=⇒

++−
= km

mn
i

kn
i  

is a fixed point. 

By similar argument as in the cases I&II above  
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2

1+
−=

m
ni   

is the second fixed point. 

Case III. ,32 += km  the next odd natural number after 12 +k  

 

( )( )

( )( )22121
2

1)32(
2

1)32(

2
3)32(

2
1)32(

2
1)32(

2
1)32(

2
)32(

2
1)32(

1)32(2)32(132

−−−−−⎟
⎠
⎞

⎜
⎝
⎛ ++

−
++

−

⎟
⎠
⎞

⎜
⎝
⎛ ++

−
−+

−⎟
⎠
⎞

⎜
⎝
⎛ ++−++−

⎟
⎠
⎞

⎜
⎝
⎛ +−−+−

−+−+−=+

knnknn
k

n
k

n

k
n

k
n

knkn

knkn
knknkρ

 

The first point is at 

 .32,
2

1
22

1)32(
+=

+
−=⇒

++−
= km

mn
i

kn
i  

By a similar argument as in the above cases 1 & 11, the second fixed point is at 

 .32,
2

1
2

1)32(
+=

+
−=⇒

++
−= km

m
ni

k
ni  

The induction process shows that if n  is even and 12 += km  the permutation mρ  

has two fixed points at 

 ( )
2

1
1

2
1 +

−+−=
m

nandmni  

3.10.3 Lemma 

If n  is even and −m odd for every nORD∈ρ  there are exactly 
2
n  

derangements and 
2
n  permutations each having exactly two fixed points in 

nORD . 
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Proof 

If n  even is ( ( )244 += korkn ), it is clear that there are 
2
n  even numbers 

of sm′ ’ in ,n  and 
2
n  odd numbers of sm′  in .n  If 12 += km  there are 

2
n  odd sm′ ’ 

in .n  It implies that there are 
2
n  permutations with two fixed points in n  by 

Lemma 3.10.2 Similarly, by the same argument 2m k=  and Lemma 3.10.2 

there are  
2
n  derangements in .n  

3.10.4 Result 

If n  is odd, ( ) 1=mf ρ   for all m , mρ ∈ nORD . 

Proof 

This result follows from Lemma 3.10.1 

3.10.5 Result 

Let ,24 += kn  if  km 2=  then there are exactly 
2
n  odd derangements and 

if 12 += km  then there are exactly 
2
n  even permutations each having exactly 

two fixed points, for every nm ORD∈ρ . 

Proof 

If  ,24 += kn  there are exactly 
2
n  derangements and exactly 

2
n  

permutation with two fixed points by Lemma 3.10.3 since nORD∈ρ  cannot 

have two cycles of different length from Result 3.8.8. 
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Now, if ,2km=  mρ  is a derangement by Lemma 3.10.2 and can be 

written as a product of 12
2

0)24(
+=

−+
k

k  transpositions, a product of an odd 

number of transpositions, odd permutations. 

 If 12 += km  then each m nORDρ ∈  has two fixed points as given by Lemma 

3.10.2 and can be written as a product of  k
k

2
2

224
=

−+   transpositions, a 

product of even number of transpositions, an even permutation. 

3.10.6 Result 

Let ,4kn=  if  km 2=  then, there are exactly 
2
n  even derangements, and if 

12 += km  there are exactly 
2
n  odd permutations each having two fixed points, 

for every m nORDρ ∈ . 

Proof 

By a similar argument as in the proof of Result 3.10.5 above, if kn 4=  

and ,2km =  for every nm ORD∈ρ  can be written as a product of 4 0 2 ,
2

k k−
=  an 

even number of transpositions, an even permutation. (Lemma 3.10.2) 

If ,4kn=  and 12 += km  each mρ  has two fixed points, and can be written 

as a product of (4 2) 0 2 1
2

k k− −
= −  transpositions, an odd permutation. 

3.10.7 Result 

If ,14 += kn  then there are −n even permutations each having a unique 

fixed point in  nORD . 
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3.10.8 Result 

If ,34 += kn  then there are −n odd permutations each having a unique 

fixed point in nORD . 

 The proof of the above two results is similar to that of Results 3.10.5 

and 3.10 6 above. 

3.10 9 Remark 

Let ( )knf ,  and ( )nnf ,  be as defined above. We give the algebraic proof 

of proposition 3.6.1. 

Proof 

If n  is odd there are 1−n  derangements from nOPD  by Lemma 3.9.2  We 

observe that in  nORD  there are no derangement if n  is odd, by Lemma 3.10.4 

If n  is even there are 1−n  derangements from nOPD  by Lemma 3.9.2 and 
2
n  

derangements from Lemma 3.10.3. 

The proofs for (b) and (c) are similar to that for (a) above. 

3.11 EVEN AND ODD PERMUTATIONS 

3.11.1 Proposition 

 Let ( ),e n k  and ( )nne ,   be as defined in equation (3.7), we give the 

algebraic proof of proposition 3.7.1. 

Proof 

If n  is odd, then all ∈α nOPD  by Lemma 3.9.3 are even derangements 

except the identity element. There is no derangement in  nORD   for n -odd by 

Lemmas 3.10.1 and 3.10.4. 
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 If ,24 += kn  then there are 1
2
−

n  even derangements from  nOPD  by 

Lemmas 3.9.2 & 3.9.4. In nORD , we consider two cases of ,m 12 += km  and 

.2km=  In both cases, there is no even derangement from Results 3.10.5. 

If ,4kn=  there are 1
2
−

n  even derangement from Theorem 3.9.4 in nOPD . 

Note that in nORD  we consider two cases of .m  If  ,2km=  then there are 
2
n  

even derangements from Result 3.10.6. There is no even derangement for   

.12 += km  

 The proof for (b) and (c) are similar to that for (a) above, while (d) 

follows directly from proposition 3.6.1(d). 

3.11.2 Proposition 

Let ( ), ,f n n ( ), ,f n k ( ) ( ), , ,e n n e n k , ( ),e n n′  and ( )kne ,′  be as defined in 

section 3.7, the algebraic proof of proposition 3.7.2 follows directly from the 

algebraic proof of proposition 3.6.1 given above.
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4. ( )kne ,  

k 

 

n 

0 1 2 3 4 5 6 7 8 9  

( )∑ kne ,  

0 

1 

1 

0 

 

1 

        1 

1 

2 0 0 1        1 

3 2 0 0 1       3 

4 3 0 0 0 1      4 

5 4 5 0 0 0 1     10 

6 2 0 3 0 0 0 1    6 

7 6 0 0 0 0 0 0 1   7 

8 7 0 0 0 0 0 0 0 1  8 

9 8 9 0 0 0 0 0 0 0 1 18 
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5. ( )kne ,′  

  k 

 

0 1 2 3 4 5 6 7 8 9  

( )∑ ′ kne ,  

0          0 0 

1 0 0         0 

2 0 0 0        0 

3 0 3 0 0       3 

4 2 0 2 0 0      4 

5 0 0 0 0 0 0     0 

6 6 0 0 0 0 0 0    6 

7 0 7 0 0 0 0 0 0   7 

8 4 0 4 0 0 0 0 0 0  8 

9 0 0 0 0 0 0 0 0 0 0 0 

 

n 
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3.12 DIHEDRAL GROUPS AS HOMOMORPHIC IMAGES 

We proved the three families: ( ),24,2 +rrF  ( )88,34 ++ rrF  and 

( )128,54 ++ rrF  of the Fibonacci groups ( )nmF ,  to be infinite by defining 

morphism between dihedral groups and the Fibonacci groups. 

The dihedral group denoted by nD  is usually defined as 

2 1, 1, .n
nD x y x y yx xy−=< = = = >  

It is easy to prove the following: 

3.12.1 Lemma 

For all 0,1,2, , 1k n= −…  we have; 

( ) ;knk xxa −− =                   ( ) ( ) ;12
=yxd k  

( ) ;1 yyb =−                        ( ) ;yyxxe kk =  

( ) ;yxyxc knk −=                 ( ) .11 −− == nxxyxyf  

Thus we may write the elements of nD  uniquely as kx  or ,yxk  for 

1,,2,1,0 −= nk … . 

( ) >===< +−++ miaaaaaaanmF mimiiin ,,2,1,,,, 1121 ……  

where subscripts are taken modulo n  if necessary. The following lemma seems 

to be useful: 

3.12.2 Lemma 

For all 0>k  and 2≥m  2
1

1
1 −+

−
−+ = kmkkm aaa  

Proof 

1 1m k k k m ka a a a+ + + −=  

      ( )1
1 1 1 2 1 k k k k m k m ka a a a a a−
− − + + − + −=  
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       1 2
1 1k m ka a−
− + −=  

3.13 THE FIBONACCI GROUP ( )24,2 +rrF  

Consider the Fibonacci group 

( ) 1 2 4 2 1 2 2 12 , 4 2 , , , 1, 2, , 4 2r i i i r i rF r r a a a a a a a i r+ + + + ++ =< = = + >… …  

where subscripts are taken modulo 24 +r  if necessary. The following lemma 

seems to be useful: 

3.13.1 Lemma 

For all 0≥k  and ,2≥r  2
12

1
12 −+

−
−+ = krkkr aaa  

Proof 

1212 −+++ = krkkkr aaaa  

        ( ) 122211
1
1 −+−++−

−
−= krkrkkkk aaaaaa  

           2
12

1
1 −+

−
−= krk aa  

3.13.2 Proposition 

There exist a morphism from ( ) ( ).324,2 ≥+ nDontorrF n Hence 

( )24,2 +rrF is infinite. 

We shall prove this result by a sequence of lemmas and observations 

which we record as equations. First, we define a mapping from the first r2  

generators of ( )24,2 +rrF onto the two generators of nD by 

xa →1  and yai →  ( ) ).9.3(2,,2 ri …=  

Then we immediately see that for 1≥r  

 (3.10)12
22112 xyxyaaaa r

rr =→= −
+ . 

and using lemma 3.13.1, we deduce that 
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( ) ( ).11.311212
12

1
122

−−−
+

−
+ ==→= n

rr xxxyxaaa  

( ) ( )12.3222112
22

1
232 yxyxxyaaa nn

rr ==→= −−−
+

−
+   

More generally, we have 

3.13.3 Lemma 

For  ,124 +≤≤ ri 2≥r .  ya ir →+2  

Proof 

The proof is by induction. 

Basis step: By Lemma 3.13.1 and (3.12), we see that  

( ) .12212
32

1
342 yyyxyaaa rr ==→= −−

+
−

+  

Induction step: suppose that ( ).2,,5,42 rkya kr …=→+  

Then using Lemma 3.13.1 again, we see that   

.1212
2

1
12 yyyyaaa krkkr ==→= −−

+
−

++  

as required. 

3.13.4 Lemma 

For 1≥r  we have; 

( ) ;24 xyaa r →+  

( ) ;34 xab r →+  

( ) ).224(4 +≤≤→+ riyac ir  

Proof 

We shall henceforth use Lemma 3.13.1, equations (3.9) to (3.12) 

whenever necessary without mentioning. 

( ) .)( 212
14

1
1224 xyyxyaaaa rrr =→= −

+
−
++  
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( ) 1 2 1 1 2
4 3 2 2 4 2 ( ) ( )n

r r rb a a a x xy x− − −
+ + += → =  

(c) This is by induction. 

Basis step: 

( ).)(.)( 222122
34

1
3244 bbyyyxxxyxaaa rrr ==→= −

+
−
++  

Induction step: suppose that ( )4 4,5, , 2 1 .r ka y k i r+ → = = +…  

Then 

 ,212
4

1
214 yyyaaa krkrkr =→= −

+
−
+++  

as required. 

It is now clear from Lemma 3.13.3, Lemma 3.13.4 and equations (3.10) 

to (3.12) that the map:→  defined from the first r2  generators of 

( )24,2 +rrF onto the two generators of nD  by xa →1  and yai →  ( )ri 2,,2…=  as 

in (3.9) is indeed a morphism onto nD . 

3.14 THE FIBONACCI GROUP ( )88,34 ++ rrF  

Consider the Fibonacci group 

( ) >+===<++ ++++++ 88,,2,1,,,88,34 342418821 riaaaaaaarrF ririiir …… , 

where subscripts are taken modulo 88 +r  if necessary. 

 As in the case of the Fibonacci group ( )24,2 +rrF  we state the 

corresponding lemmas in ( )88,34 ++ rrF . 

3.14.1 Lemma 

For all 5≥k  and 0≥r . 

( ) 1 2
4 4 4 1. ;r k k r ka a a a−
+ − + −=  

( ) 1 2
6 2 4 6 1. ;r k r k r kb a a a−
+ + − + −=  



 93

( ) 1 2
8 4 4 8 1. .r k r k r kc a a a−
+ + − + −=  

Proof 

( ) 1424234 −+−+−−+ = krkrkkkr aaaaaa  

  142434
1

4 )( −+−+−−
−
−= krkrkkk aaaaa  

  .2
14

1
4 −+

−
−= krk aa  

.  ( ) 1622326 −+−+−++ = krkrkrkr aaaab  

             16263242
1

42 )( −+−+−+−+
−

−+= krkrkrkrkr aaaaa  

                       .2
16

1
42 −+

−
−+= krkr aa  

( ) 8 4 3 4 2 8 2 8 1r k r k r k r k r kc a a a a a+ + − + − + − + −=  

  18283444
1

44 )( −+−+−+−+
−

−+= krkrkrkrkr aaaaa  

             .2
18

1
44 −+

−
−+= krkr aa  

3.14.2 Proposition 

There exist a morphism from ( )88,34 ++ rrF  onto nD  

( ).3≥nallfor Hence ( )88,34 ++ rrF  is infinite. 

We carry out the proof in a similar way to that for ( ).24,2 +rrF  We 

consider the case of 0=r  first, then  1≥r . 

We define a mapping from the first 3  generators of ( )8,3F  onto the two 

generators of nD  by 

xaa →31,  and ( )13.32 ya →   

Then we immediately see that 

(3.14) 3214 yxyxaaaa =→= . 
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We shall henceforth use lemma 3.14.1 and equations ( )13.3  and ( )14.3  

whenever necessary without mentioning. 

3.14.3 Lemma 

If 5≥k  then 

( ) 1
5 7. , ;na a a x −→  

( ) 2
6 8. , .c a a x y→  

Proof 

)(a 1 2
4 1k k ka a a−

− −=  

      .1212
4

1
15

−−− =→= nn xyxaaa  

The proof of 7a follows from the same argument 

( ) 1 2
4 1k k kb a a a−

− −=  

     ( ) yxxyaaa n 22112
5

1
26 =→= −−− . 

The proof of 8a follows from the same argument 

3.14.4 Lemma 

If 5≥k  we have; 

( ) 9 11, ;a a a x→  

( ) 12 10, .b a a y→  

Proof 

( ) 1 2
4 1k k ka a a a−

− −=  

     ( )21 2 1 1 2
9 5 8 ( ) .na a a x x y x− − −= → =  

The proof of 11a follows from the same argument 
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( ) 1 2
4 1k k kb a a a−

− −=  

   ( ) yxyxaaa =→=
−− 2122

9
1

610  

The proof of 12a follows from the same argument. 

It is now clear from lemmas 3.14.3 and 3.14.4 and equations ( )13.3  and 

( )14.3  that the map:→  defined from the first 3  generators of ( )8,3F onto the 

three generators of nD  is indeed morphism onto nD . 

We define a mapping from the first 4 3r +  generators of ( )88,34 ++ rrF  

onto the two generators of nD  by 

xaa r →+321,  and yai →  2,3, , 2 2,2 4, , 4 3. (3.15)i r r r= + + +… …  

Then we immediately see that 

     2 1 2
4 4 1 2 4 3                                                (3.16)r r

r ra a a a xy xy y+
+ += = = . 

We shall henceforth use lemma 3.14.1 and equations ( )15.3  to ( )16.3  

whenever necessary without mentioning. to prove Lemmas 3.14.5 and 3.14.6. 

3.14.5 Lemma 

For  1≥r , 

( ) 1
4 5 ;n

ra a x −
+ →  

( ) 2
4 6 ;rb a x y+ →  

( ) 4 7 2 6.r ic a y i r+ → ≤ ≤ +  

Proof 

( ) 1 2
4 4 4 1r k k r ka a a a−
+ − + −=  

                1 2
4 5 1 4 9r ra a a−
+ += ( )21 1nx y x− −→ = . 
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( ) 1 2
4 4 4 1r k k r kb a a a−
+ − + −= . 

     2
54

1
264 +
−

+ = rr aaa ( )21 1 2 .ny x x y− −→ =  

(c) We carry out the proof by induction. 

Basis step: By Lemma 3.14.1, ( )15.3  and ( )b  above 

( )21 2 1 2
4 7 3 4 6 .r ra a a y x y y− −
+ += → =  

Induction step: suppose that ( )4 7,8, , 2 5 .r ka y i k r+ → = = +…  

Then using Lemma 3.14.1 again, we see that 

1 2 1 2
4 1 3 4 ,r k k r ka a a y y y− −
+ + − += → =  

as required. 

3.14.6 Lemma 

( ) 1
76

−
+ → n

r xaa ; 

( ) yxab r
2

86 →+ ; 

( ) )829(6 +≤≤→+ riyac ir . 

Proof 

( ) 1 2
6 2 4 6 1. r k r k r ka a a a−
+ + − + −=  

     2
66

1
3276 +

−
++ = rrr aaa ( )21 1.nx y x− −→ =  

( ) 1 2
6 2 4 6 1. r k r k r kb a a a−
+ + − + −=  

      2
76

1
4286 +

−
++ = rrr aaa ( )21 1 2 .ny x x y− −→ =  

(c). The assertion may be proved by induction on i k= . 

Basis step: for 9k i= =  we see that 

1 2
6 2 4 6 1r k r k r ka a a−
+ + − + −=   



 97

           ( ) .2212
86

1
5296 yyxyaaa rrr =→= −

+
−
++  

Induction step: suppose that ya kr →+6 729 +≤≤ rk  

Then using Lemma 3.14.1 again, we see that 

        ( )
2
6

1
3216 krkrkr aaa +

−
+−++ =  

since 9≥k  it is clear that ( ) 3232 +≥+− rkr  and any number say 

yaa rm →> +32 from ( )15.3  also, ya kr →+6  from the induction step, hence 

     ( )
1 2 1 2

6 1 62 3r k r kr ka a a y y y− −
+ + +− += → =  

as required. 

3.14.7 Lemma 

( ) 1120,98 +=→+ rrixaa ir ; 

( ) 114,,122,102,,11,108 +++=→+ rrrjyab jr …… ; 

Proof 

We shall apply lemma 3.14.1, ( )15.3  and ( )16.3  to prove ( )a  and ( )b .  

( ) 9== ikIfa  

      1 2
8 4 4 8 1r k r k r ka a a−
+ + − + −=  

 ( )
2

88
1

54188 +
−
+++ = rrr aaa ( ) ( )1 21 2 .nx x y x

−−→ =  

102 +== rikIf  

( ) ( )
2

)92(8
1

410241028 ++
−

−++++ = rrrrrr aaa  

( ) ( )
2

)92(8
1

410241028 ++
−

−++++ = rrrrrr aaa ( ) ( ) yyy =→ − 21  

112 +== rikIf  

( ) ( )
2

)102(8
1

411241128 ++
−

−++++ = rrrrrr aaa  
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( ) ( )
2

22
1

411241128 +
−

−++++ = rrrrr aaa ( ) ( ) xyxn =→
−− 211  

( ) 114,,122,102,,11,108 +++=→+ rrrjyab jr ……  

The proof is by induction. 

.2
18

1
448 −+

−
−++ = krkrkr aaa   

Basis step: For 10== jkIf  we have, 

( ) ( )
2

188
1

64288 ++
−
+++ = rrr aaa ( ) ( ) yxyx =→

− 212  

Induction step: suppose that ya kr →+8  for 114,,122,102,11,10 +++= rrrk ……  

           
.

2
8

1
3418 krkrkr aaa +

−
−+++ =  

From Lemma 3.14.5, 6274 +≤≤→+ riya ir   thus, 

921034 +≤≤→−+ riya ir  

           2
8

1
3418 krkrkr aaa +

−
−+++ = 1 2y y y−→ =  

as required. 

It is now clear from lemmas 3.14.5 to 3.14.7 and equations ( )13.3  to 

( )16.3  that the map:→  defined from the first 2  generators of 

( )88,34 ++ rrF onto the two generators of nD  is indeed morphism onto nD  

3.15  THE FIBONACCI GROUP ( )128,54 ++ rrF  

Consider the Fibonacci group 

( ) >+===<++ ++++++ 128,,2,1,,,128,54 5444112821 riaaaaaaarrF ririiir ……  

where subscripts are taken modulo 128 +r  if necessary. 
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3.15.1 Lemma 

For all 5>k  and 0≥r . 

( ) 1 2
4 6 4 1. ;r k k r ka a a a−
+ − + −=  

( ) 1 2
6 2 6 6 1. .r k r k r kb a a a−
+ + − + −= ;  

( ) .2
18

1
648 −+

−
−++ = krkrkr aaac .  

Proof 

We proof this lemma in a similar way we prove lemma 3.14.3. 

    ( ) 4 5 4 4 2 4 1. r k k k r k r ka a a a a a+ − − + − + −=  

                 142456
1

6 )( −+−+−−
−
−= krkrkkk aaaaa  

                 .2
14

1
6 −+

−
−= krk aa  

.      ( ) 1642526 −+−+−++ = krkrkrkr aaaab  

         16265262
1

626 )( −+−+−+−+
−

−++ = krkrkrkrkrkr aaaaaa  

                 .2
16

1
62 −+

−
−+= krkr aa  

.              ( ) 8 4 5 8 2 8 1r k r k r k r kc a a a a+ + − + − + −=  

      18285464
1

64 )( −+−+−+−+
−

−+= krkrkrkrkr aaaaa  

                .2
18

1
64 −+

−
−+= krkr aa  

We now give the main result of this section. 

3.15.2 Proposition 

There exist a morphism from  ( )128,54 ++ rrF  onto ( ).3≥nallforDn  

Hence ( ) .128,54 ++ rrF is infinite. 
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We carry out the proof in a similar way we prove ( )88,34 ++ rrF  We 

consider the case of 0=r  first, then 1≥r . 

We define a mapping from the first 5  generators of ( )12,5F  onto the two 

generators of nD by 

xaa →31,   and  yai →         ).17.3(5,4,2=i  

Then we immediately see that 

(3.18).32
543216 yyxyxyaaaaaa ==→= . 

3.15.3 Lemma 

If 0=r  then, the following mappings hold in ( )12,5F  

( ) 1
7 9. , ;na a a x −→  

( ) 2
8 10. , ;b a a x y→   

( ) 11 12. , .c a a y→   

Proof 

We shall apply Lemma 3.15.1 to prove ( )a  and ( )b  

( ) 2
1

1
6 −

−
−= kkk aaaa  

    2
6

1
17 aaa −= ( ) .121 −− =→ nxyx  

The proof of 9a follows from the same argument 

( ) 2
1

1
6 −

−
−= kkk aaab  

    2
7

1
28 aaa −= ( ) .2211 yxxy n =→ −−  

The proof of 10a follows from the same argument 

( ) 2
1

1
6 −

−
−= kkk aaad  
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    2
10

1
511 aaa −= ( ) .221 yyxy =→ −  

The proof of 12a follows from the same argument 

3.15.4 Lemma 

If 0=r  then the following mappings hold in ( )12,5F  

( ) xaaa →1513 ,  

( ) 1716,14 andkyab k =→  

Proof 

( ) 2
1

1
6 −

−
−= kkk aaaa  

    2
12

1
713 aaa −= ( ) ( ) .211 xyxn =→

−−  

The proof of 15a  follows from the same argument 

( ) 2
1

1
6 −

−
−= kkk aaab  

   ( ) .2122
13

1
814 yxyxaaa =→=

−−  

The proof of 1716, andkak =  follows from the same argument 

We now consider the case of 1≥r .We define a mapping from the first 

54 +r  generators of ( )128,54 ++ rrF  onto the two generators of nD  

               xaa r →+321,   and  yai →   ).19.3(.54,,42,22,,3,2 +++= rrri ……  

Then we immediately see that 

           (3.20)                                      .342212
542164 yyxyxyaaaa rrr

rr ==→= +++
++ . 

3.15.5 Lemma 

For 1≥r . 

( ) 1
74

−
+ → n

r xaa  
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( ) yxab r
2

84 →+  

( ) 8294 +≤≤→+ riyac ir  

Proof 

We shall apply lemma 3.15.1 and equation ( )19.3  and ( )20.3  to prove ( )a  

( )b  and ( )c  

( ) 2
14

1
64 −+

−
−+ = krkkr aaaa  

     2
64

1
174 +
−

+ = rr aaa ( ) 121 −− =→ nxyx  

( ) 2
14

1
64 −+

−
−+ = krkkr aaab  

    2
74

1
284 +
−

+ = rr aaa ( ) yxxy n 2211 =→ −−        

(c)We use induction on i k= . 

Basis step: By lemma 3.15.1 and equation ( )19.3  and ( )20.3 , we see that for 

9=k  

              ( ) .2212
84

1
394 yyxyaaa rr =→= −

+
−

+  

Induction step: suppose that .7294 +≤≤→+ rtkya kr  

Then using Lemma 3.15.1 again, we see that 

            ,212
4

1
514 yyyaaa krkkr =→= −

+
−
−++  

as required.  

3.15.6 Lemma 

For 1≥r  

( ) 1
96

−
+ → n

r xaa  

( ) yxab r
2

106 →+  
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( ) 122116 +≤≤→+ riyac ir  

Proof 

We shall apply lemma 3.15.1 and equation ( )19.3  and ( )20.3  to prove ( )a  

( )b  and ( )c  

(a) →= +
−
++

2
86

1
3296 rrr aaa ( ) 121 −− = nxyx  

(b) 96
1

42106 +
−
++ = rrr aaa ( ) yxxy n 2211 =→ −−  

(c) the assertion may be proved by induction on i k= .  

Basis step: for 11=k  we see that  

              ( ) .2212
106

1
52116 yyxyaaa rrr =→= −

+
−
++  

Induction step: suppose that ya kr →+6  11211 +≤≤ rk  

Then using Lemma 3.15.1 again, we see that 

           ( )
2
6

1
5216 krkrkr aaa +

−
+−++ =  

Since 10>k  it is clear that 3+2r>k +5)-(2r  also 1
6

−
+ = n

kr xa , hence 

                  ( ) .212
6

1
5216 yyyaaa krkrkr =→= −

+
−

+−++  

as required. 

3.15.7 Lemma 

( ) 8 13, 2 15r ia a x i and r+ → = +  

( ) 8 14,15, , 2 14, 2 16, , 4 17r jb a y j r r r+ → = + + +… …  

Proof 

We shall apply lemma 3.15.1 and equation ( )19.3  and ( )20.3  to prove ( )a   

and ( )b . 
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  ( ) 13a If i k= =  

      .2
18

1
648 −+

−
−++ = krkrkr aaa  

     2
128

1
74138 +

−
++ = rrr aaa ( ) ( ) xyxn =→

−− 211  

             
( ) ( )

2
1428

1
615241528

152

++
−

−++++ =

+=

rrrrrr aaa
riIf

 

  2
22

1
96 +

−
+= rr aa ( ) ( ) xyxn =→

−− 211  

(c)  Here we use induction on j k= . 

Basis step:  For 14=j  we have, 

.2
18

1
648 −+

−
−++ = krkrkr aaa  

( )
2

1148
1

144148 −+
−
++ = rrr aaa  

       ( )
2

1128
1

842)128( ++
−
+++ = rrr aaa ( ) .212 yxyx =→

−  

 Induction step: suppose that 164,,162,142,,15,148 +++=→+ rrrjya jr ……  

2
8

1
6418 krkrkr aaa +

−
−+++ =  

From Lemma 3.15.5, 8294 +≤≤→+ rjya jr   thus, 

                1421564 +≤≤→−+ rjya jr  

2
8

1
6418 krkrkr aaa +

−
−+++ = .21 yyy =→ −  

as required. 



 105

CHAPTER FOUR 
SUMMARY OF RESULTS, CONTRIBUTIONS AND AREAS FOR 

FURTHER RESEACH 
 

4.1 SUMMARY OF RESULTS 

We have, in this thesis, accomplished the following: 

1. We obtained and discussed formulae for the number of even permutations 

(of an n -element set) having exactly k  fixed points in the alternating group. 

2. We obtained generating functions for the number of even permutations 

having exactly k  fixed points in alternating group. 

3. We also obtained similar results (as in 1 and 2 above) for the number of odd 

permutations having exactly k  fixed points and their generating functions in 

the alternating group. 

4. We give a geometric proof for the number of even (odd) permutations (of an 

n -element set) having exactly k  fixed points in the dihedral group. 

5. We give an algebraic proof in line of Catarino and Higgins (1999) for the 

number of even (odd) permutations having exactly k  fixed points, in the 

dihedral group. 

6. We proved the three families: ( ),24,2 +rrF  ( )88,34 ++ rrF  and 

( )128,54 ++ rrF  of the Fibonacci groups ( )nmF ,  to be infinite by defining 

morphism between Dihedral groups and the Fibonacci groups. 

7.  We give an alternative prove of the Cauchy’s formula ( ),f m n for be the 

number of permutations of nX  that can be express as a product of 

( )1, 1, 2, , 1ir m i i m− + = −  cycles. 
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4.2  CONTRIBUTIONS TO KNOWLEDGE 

1. We obtained and discussed formulae for the number of even and odd 

permutations (of an −n element set) having exactly k  fixed points in the 

alternating group and the generating functions for the fixed points. 

2. We give two different proofs of the number of even and odd permutations 

(of an −n element set) having exactly k  fixed points in the dihedral group, one 

geometric and the other algebraic. In the algebraic proof, however, we further 

obtain the formulae for determining the fixed points. 

3. We proved the three families; ( ),24,2 +rrF  ( )88,34 ++ rrF  and 

( )128,54 ++ rrF  of the Fibonacci groups ( )nmF ,  to be infinite by defining 

Morphism between Dihedral groups and the Fibonacci groups. 

4.  We give an alternative prove of the Cauchy’s formula for the number 

permutations with a given cycle structure. 

4.3 AREAS FOR FURTHER RESEACH 

1. The new method we introduced may be tested for the two families 

( )5,57 iF +  and ( )5,58 iF +  for integers 0≥i  that remain unsettled by creating 

morphism between the Fibonacci groups and a suitable permutation group 

2. There is room for further research in the determination of more 

combinatorial properties of the permutation groups we discussed and other 

permutation groups. 

3. The study of classification of transitive p  groups of degree say mp  in line 

with Audu (1986a) can be considered, by obtaining the number of k  fixed 
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points and the generating functions for the fixed points of transitive p  groups 

of degree say mp . 

4. The study of permutations as even(odd) according to its length can be 

considered using number of fixed points. 

5.  The number of even (odd) permutations with a given cycle structure. 

6.  The number of cycle structures in a given permutation. 
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