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Analyses of a mixing problem and associated delay models 
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ABSTRACT: In this article, we gave an exposition on a class of mixing problems as they relate to scalar delay 

differential equations. In the sequel we formulated and proved theorems on feasibility and forms of solutions for 

such problems, in furtherance of our quest to enhance the understanding and appreciation of delay differential 

equations and associated problems. We obtained our results using the method of steps and forward continuation 

recursive procedure. 
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I. INTRODUCTION 

Dilution models are well known in the literature on ordinary differential equations.  However literature 

on the extension of these models to delay differential equations is quite sparse and the associated analyses not 

thorough, detailed or general for the most part. See Driver (1977) for an example. This article leverages on the 

model in Driver to conduct detailed analyses of ordinary and associated delay differential equations models of 

mixing problems, with accompanying theorems, and corollary, together with appropriate feasibility conditions 

on the solutions.  

 

II. PRELIMINARY DEFINITION 

A linear delay differential system is a system of the form: 

 

                                            ( ) ( ) ( ) ( ) ( ) ( ), (1)x t A t x t B t x t h g t     

 

where A and B are n n  matrix-valued functions on R  and h > 0 is some constant and g(t) is continuous. 

 

Remarks 

Any other appropriate conditions that could be imposed on g, A and B to guarantee existence of 

solution will still do. The need for appropriate specification of initial data will be looked at very shortly. 

If   0g t t IR   , then (1) is called homogeneous. If A and B are time-independent, the system (1) is referred 

to as an autonomous delay system.  

 

III. AN ORDINARY DIFFERENTIAL EQUATION DILUTION MODEL (MIXING 

PROBLEM) 
Consider the following problem: 

A G-gallon tank initially contains 0s pounds of salt dissolved in W0 gallons of water. Suppose that 

1
b gallons of brine containing 

0
s pounds of dissolved salt per gallon runs into the tank every minute and that the 

mixture (kept uniform by stirring) runs out of the tank at the rate of  
2

b  gallons per minute. 

 

Note: We assume continual instantaneous, perfect mixing throughout the tank. 

The following questions are reasonable: 
 

a) Set up a differential equation for the amount of salt in the tank after t minutes. 

1) What is the condition for the tankto overflow? 

2) Not to overflow? 

3) how much salt will be in the tank at the instant it begins to overflow? 

 

b) Will the tank ever be empty? 
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Solution 

Let  S t  be the amount of salt in the tank at time t. Then b1 gallon of brine flow into the tank every minute and 

each gallon contains s pounds of salt. Thus b s1  pounds of salt flow into the tank each minute. 

Amount of salt flowing out of the tank every minute: at time t  we have  S t  lbs of salt and 

0 1 2
( )W b b t   gallons of solution in the tank, since there is a net increase of 

1 2
( )b b  gallons of solution 

every minute. Therefore, the salt concentration in the solution at time t  is 

0 1 2

( )

(

S t

W b b 
  lbs per gallon, and salt 

leaves the tank at the rate  

               
2

0 1 2

2

0 1 2

( )
lbs/gallon  gallons/minute

( )

( )
lbs/ min.

( )

S t
b

W b b t

b S t

W b b t 


 

 
 
 

 

    

Hence the net rate of change, 
dS

dt
 of salt in the tank is given by 

Net rate of change = salt inflow per minute - salt outflow per minute, expressed as: 

  

                                                        
2

1 0

0 1 2

(2)
( )

b SdS
b s

dt W b b t
 

 
 

 

2

1 0

0 1 2

(2)
( )

b SdS
b s

dt W b b t
  

 
, a first order differential equation ( ) ( ),

dS
p t S q t

dt
   with 

                                                          

                                                             2

1 0

0 1 2

( )  and ( )
( )

b
p t q t b s

W b b t
 

 
 

 

The integrating factor is 

 

 
( )

1 2

2
0 1 0

1 2

2
( )0 1 2

Ln ( )

( ) ,
p t dt

b

W b b t
b

W b b t
b b

dt

I t b be e e
   




     

  

                                                                           =   

2

1 2
0 1 2( )

b

b b
W b b t


   

Now  
0 1 2

( ) 0W b b t    makes practical sense, as the amount of brine cannot be negative or 0 at 

any time .t  

Case i: 
1 2

b b   tank overflows at some time t if mixing is continual, thus 

                                                                             
2

1 20 1 2( )
b

b bI t W b b t      

The general solution given by,
1

( ) ( ) ( )
( )

S t q t I t dt C
I t

  
  , where C is an arbitrary constant. 

Hence, 

 

 
 

2

1 2
2

1 2

1 0 0 1 2

0 1 2

1
( ) ( )

( )

b
dt

b b
b

b b

S t b s W b b t C

W b b t
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                          =   

 
 1 0

0 1 2

0 1 2

2

1 2
2

1 2

( )

( )

b

b b
b

b b

b s
W b b t dt C

W b b t 


 

   
  
   

          =   

 

 b s

W b b t
b b b

b b

Cb

b b

W b b t

b

b b

1 0

0 1 2

1 2 2

1 2

2

1 2

0 1 2

2

1 2

1 1

1 







































  

( )
( )

.

( )

 

             

                        =    

 
 1 0

0 1 2

1

0 1 2

1

1 2
2

1 2

1
( ) . (3)

( )

b

b b
b

b b

b s
W b b t C

b
W b b t





 
   

  

 

 

At the instant the tank overflows, 
0 1 2

( ) ,W b b t G   so that  
0

1 2

G W
t

b b





  

The amount of salt in the tank at that instant is 
0

1 2

G w
S

b b





 
 
 

.  Now, C can be obtained by noting that 
0

(0) ,S S  

yielding: 

                                    

2

1 2

2

1 2

1 0

0 0

1

0

1
,

b

b b

b

b b

b s
W C S

b
W





 
 
 
  

 

2 1

1 2 1 20

0 0

1 0 1

1
b b

b b b bs
C W W

b s b

 
    

Therefore, 

1 2

o
G W

S
b b





 
 
 

 = 

1

1 2

2

1 2

1 0 0

0 0

1 1 0 1

12

1 2 1 21 1
bb

b b b b

b

b b

b

b b

b s S
G W W

b b s b
G

 




 
 
 
  

 

                      =
2

1 2

0 0 0

2
1

1 2
1 20

0

1

1 21
b

b b

b

b b

b

b b
b

b b
G S W W

G

s

s








 
  
 
 

 

 

Case ii: 
1 2

b b  tank never overflows. 
2

1 2

1 2

0 0 .
b

b b
b b

   


 

 

In (3) the expression,   
b

b b

2

1 2

1

1















 is feasible provided 
2

1 2

1.
b

b b
 


  

 

Now  the equation
b

b
b

2
21

1      b b b2 1 2 ,  b1 0   no brine solution runs into the 

tank at any minute mixing or dilution does not take place; so we must have 
b

b b

2

1 2

1


  , implying that 

(3) is feasible, provided b b1 2  and the expression for  S t  is preserved if b b1 2 .  

(c) The tank will be empty at an instant t  if b b1 2  and W b b t0 1 2 0  ( ) ,  yielding  t
W

b b




0

2 1

 . 
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However, this would render  S t undefined; thus the condition. 
0 1 2( ) 0W b b t    is infeasible. This 

agrees with our intuition and the physics of the problem: as long as 1 0b   the tank is never empty.  

The case b b1 2  implies that the tank never overflows. 1 2 1 2 0.b b b b     (2) yields:  

dS

dt

b S

W
b s 

2

0

1 0  

                      
2

0

b
t

W
I t e  .  

2 2

0 0

1 0( )

b b
t t

W WS t e b s e dt C
  

 
  

 

2
02 0

1 0
0 2

b
t

WWb
t b s e C

W b

e

 
 
 
  




  

S S( )0 0   
b s

b
W C S

1 0

2

0 0   C S
b

b
s W0

1

2

0 0

   














S t e
b s

b
W e S

b s

b
W

b

W
t

b

W
t

( )

2

0

2

0
1 0

2

0 0

1 0

2

0  

                                                           

2 2

0 01
0 0 0

2

( ) 1 (4)

b b
t t

W Wb
S t e S S W e

b

   
      

    

 

 

 

IV. REFINEMENT OF THE MODEL TO A DELAY MODEL 

Practical reality dictates that mixing cannot occur instantaneously throughout the tank. Thus the 

concentration of the brine leaving the tank at time t  will be equal to the average concentration at some earlier 

instant, t h  say, where h  0 . Setting S t x t( ) ( )  the ordinary differential equation (2) modifies to:   

                                        

                                                   
2

1 0

0 1 2

( ) ( ) (5)
( )

b
x t x t h b s

W b b t


  

 
  

This is a delay differential type of linear nonhomogeneous type, in the form (1) with 

1,n  2

0 1 2

( ) 0, ( ) ( )
( )

b
A t B t b t

W b b t


  

 
, and g t b s( )  1 0 . Clearly A, B and g are continuous. For 

simplicity assume the following: 

i. s0 0 . This implies that the inflow is fresh water  

ii.b b1 2 . This implies that the inflow rate of fresh water equals the outflow rate of brine. 

Then, set 
2

0

b
C

W
  to obtain the autonomous homogeneous linear delay differential equation: 

                                               ( ) ( ). (6)x t c x t h    

  

Above equation can be solved using the steps method. This consists in specifying appropriate initial 

conditions on prior intervals of length h and extending the solutions to the next intervals of length h. Since the 

tank contained S0  lbs of salt thoroughly mixed in W0  lbs of brine prior to time t t 0 , the commencement of 

the flow process, we can specify the initial conditions x t S( )  0 for t h t t0 0    and then obtain the 

solution on the intervals   t k h t kh0 01  ( ) , for 1,2,k   successively. 

Therefore given: 
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(7)( ) ( )x t c x t h  
0

and  ( )x t S    0 0on ,t h t , we wish 

to obtain the solution for t t 0 .   

Set 0 0.S   Note that 0 0t h t t    
0 0on ,t t h   .  Therefore,  x t c 0   0 0on , ,t t h  with 

initial condition:   

                 0 0 0 1 0 0 0 0 1 1 0 0
( ) ; 1x t x t c t k x t c t k k c t                 

                          0 0
1x t c t t       0 0for (8),t t t h        

                            0, if 1 0 or 1x t ch ch     

On    t h t h t h t t h0 0 0 02    , , , .  Hence,  

              0 0 0x t c c t t h  
       on t h t h0 0 2 , , leading to the solution: 

      

    0 0

2
2

0
0 0 2 , on , 2 ]. (9)[

2
h t h

c
x t c t t t h k t


           

 

By direct substitution and use of (8) we get: 

     0 0 0 2 0 1x t h c t h k ch                                                      

                             
2

2

2 0 0 0 0 0
1 1 (10)

2!

c
k ct x t c t t t t h          

 
 
 

 

                            0 (11)0, if 1 0x t c t t     

Noting that     t t h0 2   on t h t h0 0 2 , ,  we infer that 

 01 0 if 1 2 0 or 2 1.c t t ch ch       Hence  
1 1

2 2!
0, if ifx t ch ch

 
   

 
 

Next, consider the interval    0 0 0 0
2 , 3 . Then , 2 . Therefore:t h t h t h t h t h        

                 
2

2

0 0 0 , (12)1 2
2!

c
c c t t h t t hx t 
 

   
 
        

on the open set  0 02 , 3 .t h t h   

Integrating over the interval  t h t h0 02 3 ,  yields: 

                               
2 2

3
0

0 0 3

(
2 13

2 3!

t t h c
x t c t c t t h k

   
          

   

 

Direct substitution into (13) and use of (10) yields: 

   
2 2 2

2

0 0 0 3 02 2 1 2
2 2

c c h
x t h c t h h k ch 

   
           

   
 3 0 01k c t     

           3 0 01k c t     

                 

         
2 3

2 3

0 0 0 01 2 14
2! 3!

c c
x t c t t t t h t t h 

 
                

 

 

Assertion 1: 

                   0 0

1
, if  

3!
0, on 2 , 3 (15)chx t t h t h       

Proof 

                      0 , 2t t h h h      on  t h t h0 02 3 ,  
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t t h h t h t h

t t h h t h t h

    

   

0 0 0

0 0 0

2 0 2 3

2 3 2 3

, [ , ]

, [ , ]

  on 

on 
 

From these facts, we deduce the following:                                                    

     0 03 ; 2 , 16c t t ch c t t h ch          
 

          
 

 
 

33
3

0 2 , 17
3! 3!

chc
t t h        

                     
2 2 2

2

. 18
2! 2!

c c h
t t h      

 

Plug in (16), (17) and (18) into (14) to deduce that:  

             
2 2 2 2

01 3
2! 3!

c h c h
chx t 

 
    
 

 

                                  

 4
19

1 1
1

2 6


 
 
 

                     

   0 , if  
1

3!
ch    proving assertion 1. 

Let    kx t y t  on   t k h t kh0 01  , .  Then, 

Theorem 1 

     :kx t y t  

                        

      0

0

1

1 1
1

!
(20)

jj
k

j

c t t j h

j




   


 
 
  

            

on the interval   0 0 ,1 ,kJ t k h t kh 
     with initial function    1kx t y t , on the interval 1kJ   

for k = 1,2, …,  where,   0 0,x t y    on I0.   Moreover,   0ky t  , wherever 
1

!
ch

k
 . Hence, 

  0,x t   for 0t t . 

Proof 

 

 Proof is by inductive reasoning on k. The result is definitely true for k = 1, 2 and 3, following the 

solutions obtained on ,kJ   for k =1, 2 and 3. Assume that (20) is valid for 1 k m for some integer m > 3. 

Then, mt h J   for 1mt J   and hence  x t h  0  on Im1  if 
 

1

1 !
ch

m



. 

Now,    x t c x t h   on       0 0 1 mt mh t m h x t c y t h        

         
    0

0

1

1 ( 1
1

!

jj
m

j

c t h t j h
c

j




         
 
 

   
    0

0

1

1
1

!

jj
m

j

c t t jh
c

j




        
 
  

  

 

Thus: 
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1

0

0 1 1

1

1
, on  21

!

jj
m

m m

j

c t t jh
x t c t k J

j




 



         
 
 

   

 

Plug  0t mhx   into (20) with k = m and into (21) and set the results equal to each other to obtain, 

                         

    0 0

0

1

1 ( 1)
1

!

jj
m

j

c t mh t j h

j




        
 
 


 

 

                   
    

 

11

0 0

0 0

1

1

1 !

jj
m

j

c t mh t jh
c t mh

j






          
 
 

    Km 1  

 

The last summation notation can be rewritten as:  

 

                             
j

m
j

j

c t mh t j h


     

 




2
0 01 1 




j

m

jT
2

 , so that   

                       K c t mh cmhm    1 0 01    0

2

m

j j

j

T T 


     1 0 0c t   

Thus:                                                              

                                                               

0 0(1 ) , 1, 2, (22)jK ct j                                                                           

 

Now plug (22) into (21) to obtain  

 

                       
    

 

11

0

0 0 0

1

1
(1 )

1 !

jj
m

j

c t t jh
x t ct ct

j
 





         
 
 

  

     
    

 

11

0

0 0

1

1
1

1 !

jj
m

j

c t t jh
c t t

j






         
 
  

  

    
     1

0

0 0

2

1 1
1

!

jj
m

j

c t t j h
c t t

j






          
 
  

  

 

                                        

     0

0

1

1

1 1
1 , (23)

!

j

m

j

j c t t j h

j
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      1
0

1

1 1
since

!

jj
m

j

c t t j h

j





   
  evaluated at j  1  yields  0c t t   

 

Therefore, (20) is valid for all k = 1, 2,……, as set out to be proved. 

Next, we need to prove that;   0
k

y t   whenever 
1

!
ch

k
 .   From (20) 

                                                               

 
   

 
0

0

1
odd

1
1 , on 24

!

j

k

j k
j

c t t j h
I

j
x t 

 

       
 
  

     

          

          0 0 0 0 0
Observe that on , ( + 1 ) 1 1 , 1

k
I t t j h t k h t j h t kh t j h            ,    

 that is,       0 1 , 1 .t t j h k j h k j h          

            

Therefore,     0 1 1 ,t t j h k j h           0 1 1c t t j h k j ch            

Clearly,   0x t   if:                        

                                  

 

 
 

1

0

1
odd

1
1 0 25

1 !

j

j k
j

k j ch

j




 

 
     

 
  

  

 

(25) would hold if: 

                                                       

 
 

 
1

1
odd

( 1 )
1 26

1 !

j

j k
j

k j ch

j



 

 



  

Suppose that ch
k


1

!
 on kJ , then (26) would be valid if:                                                                           

                                                     

 

 
 

1
odd

1 1
1 27

1 ! !j k
j

k j

j k 

 



  

(27) would in turn be valid if: 

                                                        

 
 

1
odd

1
1, 28

! 1 !j k
j

k

k j 




  

 that is, if:                                                                                 

 

   
 

1
odd

1 1
1 29

1 ! 1 !j k
j

k j 


 

 . 

 

However,    21 !j j  , so that
  2

1 1

1 !j j



. 
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Hence (29) would be true if:  

                                                

  2
1

odd

1 1
1 (30)

1 ! j k
j

k j 




  

(30) would be valid if: 

                                                     

 

 

 
 

1

1

1
1 1 (31)

1 !

1
i.e. if 1

1 !

1
i.e. if 1 32

2 !

k

jk

k

k

k


















 

 

Obviously (32) is valid for 2.k   

Combine this with the fact that   for 0 t Ix t  , if 1ch   to deduce that   on 0
kk Iy t    

whenever .
1

, 1, 2,...
!

ch k
k

 
 

 

The validity of (32) implies that  

                
 

    0

1 1
lim 1, lim 0 or 0 . Note: 0 1 .

2 !
k

k k
y t x t t t

k 

 
       

  
 

This completes the proof of the theorem.  

         

V. ASSOCIATED NONHOMOGENOUS MODELS 

Suppose that the inflow is not fresh water, that is 0 0s  . Then the nonhomogeneous differential difference 

equation:  

                                              1 0, 33x t c x t h b s     

with initial data:                                                                    

 

                                             0 0 0, 34x t t h t t     

referred to as the initial function, can be solved by a transformation of variables. In the sequel, 

let     1 0b s
y t x t

c
  .  Then,  y t

b

c
s 0

1

0  on  0 0 ,t h t    x t y t  and   

                                      x t h y t h
b

c
s   

1

0   

              








      y t c y t h

b

c
s b s y t c y t h

1

0 1 0  with  y t
b

c
s 0

1

0  

on 0 0,t h t  

5.1    Corollary 1 

    i. The transformation    ~y t x t
b

c
s 

1

0  converts the linear nonhomogeneous delay differential equation 

(33) with initial function specification (34) to the following linear homogeneous  delay equation with 

corresponding initial function: 
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      35y t c y t h                

                ~y t
b

c
s 0

1

0  on  

                     0 0 36t h t   

   ii.  If  x t  is the solution of (35) on kJ  then:                      

                                                

   

     0
1 0

1

1 1
1 (37)

!

k

jj
k

j

x t y t

c t t j h b s

j c






         
 
  


      

 

on ,kJ  with initial function    x t y tk 1  on 1, 1,2,...kJ k                               

where    1
0 0 0,on .

b
x t s J

c
      

Moreover,  1 0ky t   whenever 
1

!
ch

k
 . Hence,   00, for  .x t t t    

       iii.       c b s0 1 0 0  . 

              

 More generally, given the constant initial function problem:  

                                      

       
       

   0 0 0

38

, , 39

x t a x t b x t h c

x t t h t t

   

   


 

where , , ,a b c  are given constants, the change of variables    ~y t x t d   

                          
       

       

( ) and y t x t y t a y t d b y t h d c

y t a y t b y t h c a b d

             

      

     

  
  

Setting  c a b d d
c

a b
    


0 .  Also  ~y t

c

a b
 


0 , leading to the following proposition. 

5.2   Proposition 1 

 

The initial function problem: 

 

 
       

   0 0 0

40

, 41

x t ax t bx t h c

x t t h t t

   

   


 

where ,a b  and c  are given constants such that a b  0  , is equivalent to the initial function problem of the 

linear homogeneous type: 

                                                          

       

   0 0 0

42

, 43

y t ay t by t h

y t t h t t

  

   

  


 

where:                                                     

 

                             0 0 . 44
c

a b
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Furthermore  x t  is related to  ~y t  by the equation:  

                                              

                   45
c

x t y t
a b

 


  

Remark 1 

Instead of solving (40) and (41), solve the easier equivalent problem (42) through (45).  

If b = 0, (40) and (41) degenerate to the   IVP 

                                            
 0 0 ,

x a x c

x t 

 




  

with the unique solution         0

0 .
a t tc c

x t e
a a


 

   
   

 

Equivalently, the solution of (4) through (45) is given by: 

                           

   

       0 0

0 , 46
a t t a t t

o

c
x t y t

a

c c c
x t e e

a a a
 

 

 

 
      

 



                          

 as desired. 

Remark 2 

The transformation (45) is doomed if c in (40) is replaced by nonconstant ( ),c t  as      ~y t x t d t  leads 

to      c t ad t bd t h    0 , and it is impossible to determine ( ).d t   

 

Linear translation of the initial interval and representation of the unique solution. 

Consider the constant initial function problem: 

 

                                             

       

   

0`

0 0 0

, 47

, 48

x t ax t bx t h t t

x t t h t t

   

   


 . 

Define:  

                                              

     0 . 49z t x t t   

    

Then                                          0 0 0
0z t x t t x    and      0 0 0

z t h x t h t x h      . 

 

Also:                                       t t h t t t h     0 0 0 0, ,  and 

  

                              0x t z t t   

                                               

   

       

   

0

0

, 0 50

, 0 51

z t x t t

z t a z t b z t h t

z t h t

 

    

   



  

 

Therefore, the constant initial function problem (47), (48) is equivalent to the constant initial function problem 

(50), (51) where ( )x t  is related to  z t  through the equation:                                         
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     0 . 52x t z t t   

Consequently, without any loss in generality, given (47), (48) we can solve the equivalent problem: 

 

                                 

       

   

     

0 0

, 0 53

, 54

55

x t a x t b x t h t

x t h t t

x x h



   

   

  



Denote:  

                                        

              
   

    0

1 , , 0,1,2, 56

1 , , 1,2,.. 57

k

k

J k h kh k

J k h kh k

    

  
. 

Then, 
0 0

1k kt J t h J     ; consequently     0

0 1, on .x t a x t b J 
 

 

Using (46) with c replaced by b0  we obtain   0 0
0 1ona tb b

x t e J
a a

 

 

   
 

. 

Thus: 

                                              

   0 1 11 0 11 , on 58at a tb b
x t e c c e J

a a
 

  
          

  
 

 

Clearly,     x 0 0   and   0 0 0.a hb b
x h e

a a
  
 

   
 

   

Consider  2t J . Then on 
0

2 ,J   

                                                     x t a x t
a

b

b

a
ea t h    





















1 0  

 

Denote the integrating factor by  I t . Then,  I t e a t 
  

Hence:   

                                         

 

 

 

0

02

0

1

1 59

1 (using (58))

a t a t a h

a t a t a h

a h

b b
x t e e dt e dt C

a a

b b
e e e t C

a a

b b
x h e

a a







 

 

   
         

   

   
      

   

  
    

  

     

                                          02
1 (using (59))a h a h a hb b

e h e e C
a a
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1 1

1 1 1

a h a h ah
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b b b
C e h e e

a a a

b b b b b
x t e e e t e e he

a a a a a





  

    

  
        

  

    
            

    

 

 

                      

02 2
1 1 1at a h atb b b b b b
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a a a a a a

      
             

     

 

 

                           

   

02 2

2 21 22 0 2

1 1 1

on 60

a t ah a t

at

b b b b b b
h e e t e

a a a a a a

c c c t e J





      
             

     

    

 

 

where: 

                        

2 21 222 2
, 1 1 , 1 (61)a h ahb b b b b b

c c h e c e
a a a a a a

     
            

     . 

Notice that: 

                     

1
2 1 21 1 11 22 11

1 1
, 1 1 , . (62)ah a h a hc

c c c e c he c c e c
a a a

     
               

    
 

We propose the following result.  

 

5.3  Theorem 2:                                            

                               1

0

1

63
k

j a t

k k j

j

x t c c t e 



  
   
   

  

on kJ for appropriately determinable constants , , 1, 2,..., ,k k jc c j k  where: 

      

1
2 ( 1)

1 11 11

1
, 1 ; ( 1) , ; 2,3, , (64)

( 1)!

k
k k k ah

k kkk

b b b
c c c c b e c k

a a a k


         




 
 

and for , k jj k c depends on ,h  but has no general mathematical representation. 

 

Proof 

The proof is by inductive reasoning. From (58), we see that the theorem is valid on 1,J with 

1 11, 1 .
b b

c c
a a

     From (60), (61) and (62), it is clear that the theorem is true on 2 ,J with: 

   

2 2 (2 1)

2 21 22 112 2

1
, 1 1 , 1 (65)

(2 1)!

a h ah ahb b b b b b
c c h e c e b e c

a a a a a a

        
             

    
 

Consider 3J . On 
0 0

3 2 .t J t h J     By (63), we have: 

       x t h c c c t h ea t h     

2 21 22 0           x t ax t b c c c t h ea t h     
2 21 22 0  
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2 21 22 0

2

2
21 22 0

Integrating factor, 

66
2

at

a t h a t hat at a t at

a t a t a h a h

I t e

x t e b c e dt b c e e d t b c t h e e dt C

b c t
e e b c e t b c ht e C

a







   

  



         
 

  
       

  

 

Now plug  x h2  into (63) and (66) to obtain C as follows: 

       2 2 2 22
21 22 02 2 2 2ah ah ah ahbc

x h e e bc e h bc h h e C
a

   
      

 
 

                   

 

22
21 0

2

2 21 22 0

2 22
21 2 21 22

2

2

ah ah

ah

ah ah ah

bc
bc h e C e

a

c c h c e

bc
C e bc h e c c h c e

a







 
    
 

    

 
      

 

 

 

Now, plug this value of C  into (66) and set the resulting expression equal to 

  c c c t c t ea t

3 31 32 33

2

0     to get: 

                         

            

 

 

2

2
21 22

0

2 22
21 2 21 22

2

3 31 32 33 0

2

2

(67)
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ah a h a h

b c t
e bc e t bc ht e

a
x t e

b c
e bc h e c e c hc

a

c c c t c t





  

 

  
     

  
 
     
 

    
 

  

                                    

2

2
3 2 3
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c c c
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Clearly (67)   

                   
3 1

3 3 12 3 2

3 33 22 113

1 1 1
1 ,

2 2 (3 1)!

ahah ahb
c c b c e b e c b e
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2 2

32 21 22 1 11 11

2

1 11
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1
1 1

1
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2

ah a h ah a h ah ah
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2 21 1
1 11

2 2 2 1
1 11 1 1 11

2 2 2

1

1
1 1 1 2 1

1 1
2 1 1 1

1 1 1 1
1 1

ah ah a h ah ah ah

ah ah ah ah ah ah

a

ah ah ah

c cb b
e b he e c h e c e h e
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e c e b h e
a a a a

    

    

  

      
               
      

        
 

    
        

   

   

1

2

112 1 69ah ah ah

c

h e he b h e b h c 




     
   

 

Therefore the theorem is also valid on 3.J  From the results already obtained for c21, c31 and c32,  it is 

clear that no definite pattern can be postulated for  , 1,2,...., 1k jc j k  , even for the simplest initial 

function problem. 

Now, we proceed to complete the proof of theorem. 

Assume that the theorem is valid on , 4.kJ k    
0 0

1k kt J t h J     the theorem is valid with t 

replaced by t – h for 
0

1kt J  .  Hence: 
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0

1

1

0

1

0

1
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1
(71)

k
j a t h

k k j

j
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k
jat at ah

k k j

j

j
k
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j

x t a x t b c c t h e

I t e

x t e bc e dt c t h e dt C

t h
e b c e c e C

a j







 





 



 



  
     

   



  
       

   

  
     

    









. 

 

The constant term is: 

 

                 

   

   
 

 
 

1

0

1 1 1 1
1 1 1

0 0 1 0 11 1 1

1 using (71)

1 1 1 (72)

k
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k k
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k kk k k

b b b
c
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. 

The term in e tat k
  is  

 
 12

0 11
1 !

k k
k ahat ah at ah k

kk

t t b
e e c e e b e c

k k k
 

   


, 

by the induction hypothesis. Set 

                     
 

 

 
 1 12 2

1, 1 11 11

1 1
.

1 ! 1 !

k ah k ahat ah k at ah k

k k

b b
d e e b e c e e b e c

k k k k

      

   
 

Then 

                               

 

 
 

1 21
1 1

1, 1 11 11 1, 1
! 1 1 !

kk
k ahk ah

k k k k

b b
d e c e c c

k k

 
  

     
 

, as desired. 

Note that 
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( ) ( ) .
j

j j r r

r

j
t h t h

r
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VI. CONCLUSION 

This article gave an exposition on how a delay could be incorporated into an ordinary differential 

equations dilution model to yield a delay differential equations dilution model. It went on to formulate and 

prove appropriate theorems on solutions and feasibility of such models. It also showed how a nonhomogeneous 

model with constant initial function could be converted to a homogeneous model. Some of the results relied on 

the use of integrating factors, change of variables technique and the principle of mathematical induction. 
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