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Analyses of a mixing problem and associated delay models
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ABSTRACT: In this article, we gave an exposition on a class of mixing problems as they relate to scalar delay
differential equations. In the sequel we formulated and proved theorems on feasibility and forms of solutions for
such problems, in furtherance of our quest to enhance the understanding and appreciation of delay differential
equations and associated problems. We obtained our results using the method of steps and forward continuation
recursive procedure.
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I. INTRODUCTION
Dilution models are well known in the literature on ordinary differential equations. However literature
on the extension of these models to delay differential equations is quite sparse and the associated analyses not
thorough, detailed or general for the most part. See Driver (1977) for an example. This article leverages on the
model in Driver to conduct detailed analyses of ordinary and associated delay differential equations models of
mixing problems, with accompanying theorems, and corollary, together with appropriate feasibility conditions
on the solutions.

1. PRELIMINARY DEFINITION
A linear delay differential system is a system of the form:

X(t) = A(t)x(t) + B(t)x(t—h) + g(t), @
where A and B are nx n matrix-valued functions on R and h > 0 is some constant and g(t) is continuous.

Remarks
Any other appropriate conditions that could be imposed on g, A and B to guarantee existence of
solution will still do. The need for appropriate specification of initial data will be looked at very shortly.

Ifg (t) =0 Vt e IR, then (1) is called homogeneous. If A and B are time-independent, the system (1) is referred
to as an autonomous delay system.

I11. AN ORDINARY DIFFERENTIAL EQUATION DILUTION MODEL (MIXING
PROBLEM)
Consider the following problem:

A G-gallon tank initially contains S, pounds of salt dissolved in W, gallons of water. Suppose that
b, gallons of brine containing s, pounds of dissolved salt per gallon runs into the tank every minute and that the

mixture (kept uniform by stirring) runs out of the tank at the rate of b, gallons per minute.

Note: We assume continual instantaneous, perfect mixing throughout the tank.
The following questions are reasonable:

a) Setup a differential equation for the amount of salt in the tank after t minutes.
1) What is the condition for the tankto overflow?

2) Not to overflow?

3) how much salt will be in the tank at the instant it begins to overflow?

b) Will the tank ever be empty?
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Solution
Let S (t) be the amount of salt in the tank at time t. Then b, gallon of brine flow into the tank every minute and

each gallon contains s pounds of salt. Thus blS pounds of salt flow into the tank each minute.
Amount of salt flowing out of the tank every minute: at time t we have S (t) Ibs of salt and

W, + (b, —b,)t gallons of solution in the tank, since there is a net increase of (b, —b,) gallons of solution

S(t
every minute. Therefore, the salt concentration in the solution at time t is % Ibs per gallon, and salt
Wo +0, -0,
leaves the tank at the rate
S(t b, S(t .
S0 Ibs/gallon |[b, gallons/minute] = bSO Ibs/ min.
W, + (b, —b,)t W, + (b, —b,)t

ds
Hence the net rate of change, E of salt in the tank is given by

Net rate of change = salt inflow per minute - salt outflow per minute, expressed as:

ds _, b,S

— =bs, - ———— )
d " W, +(b—b))t

ds b,S
+

2) = —+ ————
dt W, +(b,—b)t

ds
=D, s,, afirst order differential equation E+ p(t)S =q(t), with

b
t)=——2— and t) =b s
PO = Toy ™ 90 b

The integrating factor is

IW7+(EZJOZ)t dt by Ln|Wo-+(byby)t]
I)=e"=e ° 7 = gt b, #b

! 1
by
= W, + (b, —b,)t| *
Now W, +(b, —b,)t > 0 makes practical sense, as the amount of brine cannot be negative or 0 at
any time t.
Case i: b, > b, = tank overflows at some time t if mixing is continual, thus

b,
I(t)= (W, +(b,—b,)t)b-b;
1
The general solution given by, S(t)= E U g()1(t)dt + C] , where C is an arbitrary constant.

Hence,

S(t) = S Dbl s, (W, + (b, ~b,)t )i & +c}
(Wy + (b, —b,)t)n-b:
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b,
) L b, D[Wﬁ(brbz)t]brbz dt+C}
[Wo + (b1 - bz)t]@
= b, s, 1 1 [Wo +(b1—m)t]t%bz e
O A s
b S 1 by
|5+ @B +C | 9

[W; + (b b, )t]eb

G-W,
At the instant the tank overflows, W, + (b, =b,)t =G, sothat t= 0 :

1 2

w
The amount of salt in the tank at that instant is S( : j Now, C can be obtained by noting that S(0) = S,

1 2

yielding:
b, b, by
DS T Iwe e os, so=Sowpn - Ly
b, b 0 0 b 0 b 0
Wobl,bz 1 130 1
Therefore,
G-W b 1 sk by
— S n bi—bp by-by
( OJ =% G+ S W - =W,
bl - bz G b,—b, bl blsO (!
by b2 b
1 bl_bZ _]
= ng G Jrisow0 _w,
SO
Go

b
Case ii: b, <b, = tank never overflows. b, —b, <0 = Zb <0.

1 2

b,
b, -

-1
b
0 + 1] is feasible provided —2— # —1.
) _

In (3) the expression, [
2

b
Now the equation b—i— b= -1=> by, =-Dbj+by, = by = 0 = no brine solution runs into the

tank at any minute = mixing or dilution does not take place; so we must have # -1, implying that

2
by - by
(3) is feasible, provided by # b, and the expression for S(t) is preserved if by < b, .
Wo
by - by

(c) The tank will be empty at an instant t if b; < by and Wy + (b — by)t = 0, yielding t =
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However, this would render S(t) undefined; thus the condition. W, + (b, —b,)t = 0 is infeasible. This
agrees with our intuition and the physics of the problem: as long as bl > 0 the tank is never empty.

The case by = b, implies that the tank never overflows. b, =b, = b, —b, =0. (2) yields:

ds b, s
at =~ w, b,
Doy
= I(t) = e
by, by ;\l,:lz{bﬁovt\)/; LR C]
S)=e " |[bs,e" dt+C|=e i

b;s b.
SO) = Sy=> == W,+C=S,= C=S,- —sW,

b2 0 0 0 b2
-b. b,

w2t | b,s o b,s
= S(t)=e" {1—°W0e""° +5, - — WO}

b, b,

by b b
=S(t)=e " so+b—sow0 e —1 (4)
2

1IV. REFINEMENT OF THE MODEL TO A DELAY MODEL
Practical reality dictates that mixing cannot occur instantaneously throughout the tank. Thus the
concentration of the brine leaving the tank at time t will be equal to the average concentration at some earlier

instant, t—h say, whereh > 0. Setting S(t) = x(t) the ordinary differential equation (2) modifies to:

X( ) = W X(t h)+b18 (5)

This is a delay differential type of linear nonhomogeneous type, in the form (1) with
-b
n=1 A(t)=0, B(t)=b(t)=——=——, andg(t) =b,S,. Clearly A, B and g are continuous. For
W, + (b, —b,)t
simplicity assume the following:
i.Sy = 0. This implies that the inflow is fresh water

ii.b; =D, . This implies that the inflow rate of fresh water equals the outflow rate of brine.

b . . . . .
Then, set C = VTZ to obtain the autonomous homogeneous linear delay differential equation:
0

%(t) =—c x(t—h). (6)

Above equation can be solved using the steps method. This consists in specifying appropriate initial
conditions on prior intervals of length h and extending the solutions to the next intervals of length h. Since the

tank contained S, Ibs of salt thoroughly mixed in W, Ibs of brine prior to time t = t;, the commencement of
the flow process, we can specify the initial conditions X(t) = S, for t, - h < t < t, and then obtain the

solution on the intervals [to +(k-2h, t, + kh] for k=1,2,--- successively.
Therefore given:
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X(t)=—c x(t—h) (7) and x(t)=S, on[t,—h,t,]. we wish
to obtain the solution for t > t,.

Set S, =6,. Notethat t, —h <t < t; on [to, t0+h:|. Therefore, X(t) - cd, on (to,t0+h), with
initial condition:
X(t,) =6, = x(t) =-cot+k; x(t,)= 6, =-cot,+ k, = k =(1+ct,)0,

=x(t)=6,[1-c(t-t,)] forte[t,t,+h] ®
x(t)=0, if1-ch >0orch <1
On [to +h,t, + Zh], t-he [to, t, + h]. Hence,
X(t) =—C [6’ -6, (t—t —h)] on (to +ht, + Zh), leading to the solution:

x(t)=

By direct substitution and use of (8) we get:

X(t,+h)=—c6,(t,+h)+k, = §, (1-ch)

] +k,, on [t,+h, t,+2h]. 9)

2

C 2

o [t—(t,+h)] jeo (10)
X(t)= 0,if 1—c(t—t;) = 0 (k)

Noting that — (t - to) >-2h on [to +h, t,+ 2h], we infer that

=k, =6,(1+ct)) = x(t)=(1—c(t—to)+

1-c(t—t,)=0if 1-2ch>00r 2ch<1. Hence X(t) > 0, if ch < % [if ch < %j

Next, consider the interval [t, +2h, t, +3h]. Then t—h e[t +h, t, + 2h]. Therefore:

X(t):—c{l—c( —(t,+h))+ 22[ —(t,+2h)] }9 12)

on the open set (to +2h, t, +3h).

Integrating over the interval [to +2h, t, + 3h] yields:

x(t)=—c|t_c| G S r o T g ek 13
(t)=-c|t- > +§[ —(t,+ ):| o TKg (13)
Direct substitution into (13) and use of (10) yields:

2 21,2
x(to+2h)=[—c[to+2h]+%h2]6'0+k3 - [1—2ch+C2h }90:”(3 =(1+cty)6,

=k; =(1+ct,)6)

C2 2 C3 3
— x(t) =[1—c(t—t0)+z[t—(t0 +h)] —a[t—(to +2h) ] jeo (14)
Assertion 1:
. 1
x(t)=0,on[t,+2h, t,+3h], if ch < 3 @as5)
Proof

~(ty+h)e[h,2h]on [t, + 2h,t, +3n]
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t-(t, + 2h) € [0,h] on [t, + 2h, t, + 3n]

t-t, €[2h, 3h] on [t, + 2h, t, + 3n]
From these facts, we deduce the following:

—c(t—t,)=—3ch; —c[t—(t, +2h)]|=—ch, (16)
—;—i[t—(t0+2h)]32—%, (17)
-] > Cz'; . (18)

Plug in (16), (17) and (18) into (14) to deduce that:
212 2182
x(t)z[l—Sch+C o _ch jeo

2! 3!

1 1
>|1-=——= 10 19
: 1 : :
>0,if ch< 5 proving assertion 1.

Let X(t)=y,(t) on [to +(k-1h, t, + kh]. Then,
Theorem 1

X(t) =y, (t):
1)'(c[t(to+(11>h)])’}9

j! °

(20)

k
= {1 + >

j=1
on the interval J, = [to +(k=1)h,t,+ kh], with initial function X(t) =Y (t) ,on the interval J, ,

1
fork=1,2, ..., where, X(t) =Y, =6, on o, Moreover, Y, (t) >0, wherever ch < PTR Hence,

X(t)=0, for t>1,.
Proof

Proof is by inductive reasoning on k. The result is definitely true for k = 1, 2 and 3, following the
solutions obtained on J,, for k =1, 2 and 3. Assume that (20) is valid for 1< K < 'm for some integer m > 3.

_1
(m+1)t

Now, X(t)=—CX(t—h) on (t,+mh t,+(m+1)h)=x(t)=—cy, (t-h)
—c 1+i(_1)j(C[t_h_(t“(j_l)h])j _ " (—1)j(c[t__(to+jh)]j) 0,

j=t J! j=1 J!

Then, t—heJ_forteJ ., andhence X(t-h)>0on I, ifch <

Thus:
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n, (-1)" (c[t-(t,+ h)])"

x(t)=—[ct+; 7+ ]6?0+km+1,on J . (21)

Plug X(tO + mh) into (20) with k = m and into (21) and set the results equal to each other to obtain,

{ n (1)J(c[to+mh(to+(j1)h)])j]0

= j!

(-1 (c[t, +mh—(t,+ i)])"”

_{—c(t0+mh)+i (77D ]6’0 + Kt

=1

The last summation notation can be rewritten as:
) (-1’ (C[tO + mh- (to - (j - 1)h)]j) = Zm: T, . so that
=2 j=2
Kper = [1+ {t, + mh) - cmhlg, Jri(Tj -T,)6, = (1+ct,)6,
Thus: -
K;=@+Cty)bp, j =1, 2, (22)

Now plug (22) into (21) to obtain

x(t)= ct+i(_1)J+ (CEtj;(lt;!Jrjh)]) ]6’0+(1+ct0)¢90

= 1—c(t—t0)+§ i &
_ 1+nil(_l)J(C[t_(f"m_l)h)]y 6, (23)
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since ng(_l)i (C[t _(t;:(j _1)h)])j

evaluated at j = 1 yields —C(t—to)

Therefore, (20) isvalid forallk =1, 2,......, as set out to be proved.

1
Next, we need to prove that; Y, (t) > 0 whenever ch < m . From (20)

x(t)=]1- 3 (e[t~ (e +(G-1m))

1< j<k j!
jodd

6,,0n 1, (24)

Observe thaton I, ,t—(t,+(j—1)h) €[t +(k—1)h—(t,+(j-1)h), t,+kh—(t, +(ji-1)h)],
thatis, t—(t, +(j—1)h)e [(k=j)h, (k+1-j)h].

Therefore, t—(t, +(j—1)h) < (k+1- j)h, =—c[t—(t, +(j-1)h)|==(k+1-j)ch
Clearly, X(t) >0 if:

{1_1§:kLQi%%££ﬁfﬂl ]a)>o (25)

(25) would hold if:

[(k+1— j)ch]™
K (j+1)

>

1<j<
j odd

J

<1 (26)

1
Suppose that ch < m onJ,, then (26) would be valid if:

M igl
157k (j+l)! k!
jodd

(27) would in turn be valid if:

(27)

X_1 oy
j odd

Jo
that is, if:

(28)

1 1 <1
(k—1)! 172k (j+1)
jo

(29).

1
<=
+I)

However, (j+1)!> j?. so that —
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Hence (29) would be true if;

ﬁg _dgk%sl (30)
(30) would be valid if:
L $ig (31)
(k-1 &
ie. if (:_11)!31
ie. if ! <1 (32)

Obviously (32) is valid for k > 2.
Combine this with the fact that X (t) > Ofort e I , if ch <1 to deduce that Y, (t)=0on 1,

1
whenever ch < E’ k=1 2,...

The validity of (32) implies that

! . (o1
lim ms L lim y, (t)=0 or x(t)>0 Vt>t, Note: (O_;<1j.

This completes the proof of the theorem.
V. ASSOCIATED NONHOMOGENOUS MODELS

Suppose that the inflow is not fresh water, that is Sy # 0. Then the nonhomogeneous differential difference
equation:

x(t)=—c x(t—h)+bs,, (33)

with initial data:

x(t)=6,, t,—h<t<t, (34)
referred to as the initial function, can be solved by a transformation of variables. In the sequel,

Iety(t): X(t)—%. Then, y(t) = 6, - b—cls0 on [to—h to], x(t) = y(t) and

b
x(t-h) = y(t- h)+€ls0

= y(t) = —c[y(t— h) + %SO} +b,s, = y(t) = —c y(t- h) with y(t) = g, - oS

on [tO —h, to]
5.1 Corollary1
- b.
i. The transformation y(t) = X(t) - ?lso converts the linear nonhomogeneous delay differential equation

(33) with initial function specification (34) to the following linear homogeneous delay equation with
corresponding initial function:
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y(t)=-cy(t-h) (35)
_ b,
¥(t) =6, - ?SO on

[t —h ] (36)

i. If X(t) is the solution of (35) on J, then:

x(t)=(t)

=1+ : P+ (37)
i1 J! C
on J,, with initial function X(t) = yk_l(t) onJ, , k=12,..
where X(t)=¢=6, —Eso,on Jo
C
Moreover, ¥, ; (t) >0 whenever ch < % Hence, X(t)>0, for t>t,.
ii. c6,-bs,>0.

More generally, given the constant initial function problem:
x(t)=ax(t)+bx(t—h)+c (38)
x(t)=6,,t,—h<t<t,, (39)

where a,b, C, are given constants, the change of variables y(t) = X(t) +d
= J(t)=x(t)and §(t)=a[ §(t)-d]+b[ y(t-h)-d]+c
= §(t)=ay(t)+b y(t—h)+c—(a+b)d

, leading to the following proposition.

: _ __° S(t) - ¢
Setting - (a+b)d=0= d = 2:b" Also ¥(t) = 6, + 21 b

5.2 Proposition 1

The initial function problem:

x(t)=ax(t)+bx(t—h)+c (40)
x(t)=6,,t,—h<t<t, (41)

where @,0 and C are given constants such that @+ b # O , is equivalent to the initial function problem of the
linear homogeneous type:

y(t)=ay(t)+by(t—h) (42)
y(t)=dy, t,—h<t<t (43)
where:
C
¢o:‘90+ﬂ- (44)
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Furthermore X(t) is related to Y(I) by the equation:

x(0)=5(0-—¢ (45)

a+b
Remark 1
Instead of solving (40) and (41), solve the easier equivalent problem (42) through (45).
If b =0, (40) and (41) degenerate to the VP

X=aXx+cC
X(t,) =6,
C - c
with the unique solution X (t) = (490 + —j gt _ =
a a

Equivalently, the solution of (4) through (45) is given by:

K()=3(0)~2

a
_ C C _ C
— x(t) = ea(t ) _© :((9 +_jea(t to)__, 46
(t)=4, = =6+ . (46)
as desired.
Remark 2

The transformation (45) is doomed if ¢ in (40) is replaced by nonconstant C(t), as Y(t) = X(t) + d(t) leads
toc(t) - ad(t) - bd(t - h) = 0, and it is impossible to determine d (t).

Linear translation of the initial interval and representation of the unique solution.
Consider the constant initial function problem:

x(t)=ax(t)+bx(t—h), t>t, (47)

x(t)=6, t,—h<t<t, (48)

Define:

2()=x(t-t,) (49)

Then z(t,)=x(t,—t,) =x(0) and z(t,—h)=x(t,—h—t,)=x(-h) .
Also: telto-hto]= t-ty e[ h,0] and

X(t)=2(t +1)
(1) =x(t-1,)

=z(t)=az(t)+bz(t—h),t=0 (50)
z(t)=6,, —h<t<0 (51)

Therefore, the constant initial function problem (47), (48) is equivalent to the constant initial function problem
(50), (51) where X(t) is related to z(t) through the equation:
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x(t)=z(t+t,). (52)

Consequently, without any loss in generality, given (47), (48) we can solve the equivalent problem:

x(t)=ax(t)+bx(t—h),t>0 (53)
X(t) =6,,—h<t<t, (54) Denote:
X(-) = x(-+h) (55)

J.=[(k=1)h, kh], k=012, (56)

=((k-2)h, kh), k=12,., (57)
Then, te J) =t—he J?,; consequently X(t) =a X(t)+b90, on J).
Using (46) with ¢ replaced by b8y we obtain X (t) = (670 + b:" jeat —% on J,.
Thus:
x(t)= P (1B en g =[¢+¢,e"]6,onJ (58)
a a 0 11 0 1
b an D

Clearly, x(0) = 6, and X(h)z(@o +g(90j e —590.

Consider t € J,. Thenon JJ,

x(t) = a x(t) + {— %+ (l+ g) e"‘(”‘)} 0,

Denote the integrating factor by | (t) . Then, I(t) = g at
Hence:

[ j_Ee‘a‘dtH 1+b] ‘ahdt}90+CJ
a a

{ D e j _aht}90+Cj (59)

( = K 2] —2}90 (using (58))

=e*" ([(ngh e " +£2 ea“} 0, +CJ (using (59))
a a
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b —ah b —ah b —-ah
=>C=|—— +|1+—=|(1-he -—e o
{ a ( aj( ) a’ } 0
- _b —-a b —ah b —-ah b —-ah b -ah
:x(t)_et_ge ‘+(1+gje t-—e e +(1+gj(1—he )| 6,

A,
a a \a a
:[c2+(c21+c t)e? }6’ onJ, (60)
where
b b (b b b)) ., b)
c2=¥, C21=1+5_(E+¥+h(1+5jje " czz=[1+g]e " (61).
Notice that:

1 1 -a
T e

We propose the following result.

- {Ck {Jzk; . tj-lleat}eo (63)

on J, for appropriately determinable constants C,, C, ;, j =1,2,...,k, where:

b b bk - 1
G :—g, Cpy =1 a ( 1)k Cu = (k—l)'

5.3 Theorem 2:

b“?e e 1k=2,3---, (64)

and for j =K, C, j depends on h, but has no general mathematical representation.

Proof
The proof is by inductive reasoning. From (58), we see that the theorem is valid on J,, with

b b
C, =——, C;; =1+—. From (60), (61) and (62), it is clear that the theorem is true on J,, with:
a a

C, = %, Cx =1+9— b +£+ h[l"_ bj e%ih’czz - [1+9jeah B Lbz*zei(z*l)ah ¢y (65)
a a \a a (2-1)!

Consider J,.On t e J) = t—h e J?2. By (63), we have:

x(t-h) = [c2 + (ch +Cyy(t - h)) ea("“)] g, = x(t) = ax(t b[c2 +(cp + Cop(t- ) a(t-h) ]60
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Integrating factor, | (t)=e™
= x(t)= e" [Ib c, e *dt+/bc,e ™ e®'d t+/bc, (t—h)e e Tt +C]¢90

bc

2
= gt {_?2 e +bc, e "t+bc, (%— ht]e‘ah +C} 0, (66)

Now plug X(2h) into (63) and (66) to obtain C as follows:

x(2h)=e*" {—bﬁ e?™ +bc, e 2h+be,, (2n? - 2h*)e ™ + C}HO
a

= [—b%z+b021 he™ +C eza“} 0,

=[c, +(c, +2hc,, ) e g,
=C=e¢" [%—chl he™+c,+(c,+2hc,,) eza“}

Now, plug this value of C into (66) and set the resulting expression equal to

[c3 + (031 +Cy, tH Cy tz) e"“] 0, to get:

_be,
x(t) = e* a

bc, _ -
+—2e2*" _pc,he* +c,e " +c,, +2hc,,
a

2
e +bc,e*"t+bc,, (t— ~h t] e
2 o,

- [03 + (C31 + Cypl + Cy 7 )] 6, (67)
=C __bcz__g £ __E
’ a a\a’ as
b G C, c12
=——|-2|=ccCc=¢| -2 |=—T1
Clearly (67) =
b L can_ Ly gz 1 _2 _—(3-1)ah
03:(_1) ?’Csszzbczze = Ebez Cllzmbsze( )

C, =bc,e™ -bhc,e?"= (1+ ij be*c, +b(1+he " "c, —bhe "¢,

=b Kl+ ij c +e ™ 011} e (68)

bc, 2an ah —2ah
Cy=—=€e""-bc, he” +c,e”™ +c, +2hc,,
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= (—EJ&e‘““ +(1-bhe™ )Kl+ 1je‘a“ ¢, +(1+h e‘a“)cll} Gy 2h(l+ B)e‘*‘“
aa a a a

1 _ 1 _ _ _
=e 280 2 4 2 he, e -e 2he, +(1—bheah)[(1+§)e “c,+(1+he a“)an

_Lga c? +[(1+ lj e b h(1+ lj—i eza“} C
a a a) a

+[2he ™ +(1+he™)-bhe™ —bh*|c, (69)

Therefore the theorem is also valid on J3. From the results already obtained for ¢y, Cs; and ¢z, it is

clear that no definite pattern can be postulated for Cei je {1, 2,....K —1} , even for the simplest initial

function problem.
Now, we proceed to complete the proof of theorem.

Assume that the theorem is validon J, ,k >4. te J?, = t—he J. = the theorem is valid with t

replaced by t—h for t € J° ;. Hence:

x(t)=ax(t +b[ck (chjt h)’ 1} ”‘} (70)

I(t)=e™

= x(t)=¢e" {f bc, e™ dt+I(Zk:ckj (t—h)7 e dt+CH6’0
_at _i —at : (t_h)j
=e [ abcke +(chj— +Cj]0 (72)

The constant term is:

—Eck9=( zj( 1) E& using ((71))

a
k+1 b k+1 b(k+l k+1 b(k+1)71
=(-1) P 6 =(-1) Oy = Ce1bp = Cyy = (1) o (72)
t 4 Kk t h tk ttk h b k-2 ,—(k-1)ah
Thetermin e*t" is e e —c,0=e"—ge ™ ——b“ e Cy,
Kk k (k —1)!

by the induction hypothesis. Set

_etlga D k2 g ke, _al an D k-2 ,-(k-l)ah
A =€ Pk (k-D) Gy =" (D) b“? e C,,- Then
bk—l ea b(k+l)72 . .
Gueascn = Kt o= (k+1-1)! (0 €y =Gy 11 8 desired.
) i) .
Note that (t—h)! =Z[‘jtl-f (—h)".
r=o\ I
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VI. CONCLUSION
This article gave an exposition on how a delay could be incorporated into an ordinary differential
equations dilution model to yield a delay differential equations dilution model. It went on to formulate and
prove appropriate theorems on solutions and feasibility of such models. It also showed how a nonhomogeneous
model with constant initial function could be converted to a homogeneous model. Some of the results relied on
the use of integrating factors, change of variables technique and the principle of mathematical induction.
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