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Abstract

It is well known that if the largest or smallest eigenvalue of a matrix has been computed
by some numerical algorithms and one is interested in computing the corresponding
eigenvector, one method that is known to give such good approximations to the eigen-
vector is inverse iteration with a shift. For complex eigenpairs, instead of using Ruhe’s
normalization, we show that the natural two norm normalization for the matrix pen-
cil, yields an underdetermined system of equation and by adding an extra equation,
the augmented system becomes square which can be solved by LU factorization at a
cheaper rate and quadratic convergence is guaranteed. While the underdetermined
system of equations can be solved using QR factorization as shown in an earlier work
by the same authors, converting it to a square system of equations has the added ad-
vantage that besides using LU factorization, it can be solved by several approaches
including iterative methods. We show both theoretically and numerically that both
algorithms are equivalent in the absence of roundoff errors.

1 Introduction

Let A be a large sparse, real n by n nonsymmetric matrix and B ∈ Rn×n a symmetric
positive definite matrix. In this paper, we consider the problem of computing the eigenpair
(z, λ) from the following generalised complex eigenvalue problem

Az = λBz, z ∈ Cn, z 6= 0, (1)

where λ ∈ C is the eigenvalue of the pencil (A, B) and z its corresponding complex eigen-
vector. We assume that the eigenpair of interest (z, λ) is algebraically simple, so that ψH

the corresponding left eigenvector is such that [1, p. 136]

ψHBz 6= 0.

By adding the normalisation
zHBz = 1, (2)
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to (1) and with v = [zT, λ], the combined system of equations can be expressed in the form
F(v) = 0 as

F(v) =
[
(A− λB)z
− 1

2 zHBz + 1
2

]
= 0. (3)

Note that zHBz is real since B is symmetric and positive definite. This results in solving a
system of n complex and one real nonlinear equation for the (n + 1) complex unknowns
v = [z, λ]T. Note that, if z from (z, λ) solves (3), then so does eiθz for any θ ∈ [0, 2π).
Hence, (3) does not have a unique solution. Another drawback of the normalisation (2) is
that z̄ in zHBz = z̄TBz is not differentiable. Therefore, we cannot just differentiate (3) and
apply the standard Newton’s method. In this article, we shall show how these drawbacks
can be overcome, at least for the B = I case.

Parlett and Saad in [2], studied inverse iteration with a complex shift σ = α + iβ where
α and β are real. They showed that by replacing the shifted complex system (A− σB)φ =
Bϕ, with a real one, the size of the problem is doubled, where ϕ = ϕ1 + iϕ2, φ = φ1 + iφ2
for ϕ1,ϕ2, φ1, φ2 ∈ Rn and i =

√
−1 is the imaginary unit of a complex number. This

is because solving a complex linear system of equations takes twice the storage and is
roughly three times the cost of solving a real system [3]. When real arithmetic rather than
complex arithmetic is used, we lose any band structure in A and B [2]. The numerical
examples in [2], show linear convergence to the eigenvalue closest to the fixed shift.

Next, Tisseur in [4] considered the symmetric definite generalised eigenvalue problem
Aφ = λBφ, λ ∈ R as a special case of (1) where A is symmetric and B is symmetric
positive definite but with the real normalisation

τeT
s φ = τ; for some fixed s,

where τ = max(‖A‖, ‖B‖), (see, for example, [4, p. 1049]) and ej is the jth column of the
identity matrix. The real scalar τ is introduced to scale F(w) and Fw(w) when A and B are
multiplied by a scalar. In this case,

F(w) =

[
(A− λB)φ
τeT

s φ− τ

]
, and Fw(w) =

[
(A− λB) −Bφ

τeT
s 0

]
.

Tisseur [4], showed that the Jacobian Fw(w) above is singular at the root if and only if λ∗

is a finite multiple eigenvalue of the pencil (A, B). The main result in [4] is Theorem 2.4 [4,
pp. 1044-1046]. It shows that if the linear system to be solved is not too ill conditioned, the
solver is not completely unstable, the Jacobian is approximated accurately enough and we
have a good initial guess very close to the solution, then the norm of the residual reduces
after one step of Newton’s method in floating point arithmetic. The main point is that both
[5] and [4] used two different differentiable normalisations, while in this paper we analyse
the natural extension of the distance norm, which is a non differentiable normalisation and
so leads to interesting theoretical questions.

Our approach for analysing the solution of (3) for v begins by splitting the eigenpair
(z, λ) into their real and imaginary parts: z = z1 + iz2, λ = α + iβ where z1, z2 ∈ Rn,
and α, β ∈ R. After expanding (3), we obtain a real system of (2n + 1) under-determined
nonlinear equations in (2n+ 2) real unknowns v = [z1, z2, α, β]T, and it is natural to use the
Gauss-Newton method (see, for example, Deuflhard [6, pp. 222-223]) to obtain a solution.
By linearising the system of under-determined nonlinear equations, we obtain a system

145



3

of under-determined linear equations involving the corresponding Jacobian. This idea has
been properly developed in an earlier work by the same authors [8]. Here, we show that by
adding an extra equation, the augmented system becomes square which can be solved by
LU factorization at a cheaper rate and quadratic convergence is guaranteed. We show both
theoretically and numerically that the algorithm presented in [8] and the present work are
equivalent in the absence of roundoff errors. The key result in this paper is Theorem 3.1
and Algorithm 1 is given. Throughout this paper, ‖.‖ = ‖.‖2.

2 Under-determined system of linear Equations for the computa-
tion of the complex eigenpair of (A, B)

In this section, we will expand the system of n complex and one real nonlinear equations
in (n + 1) complex unknowns (3) by writing z and λ as z = z1 + iz2 and λ = α + iβ,
respectively. The reason for having an under-determined system of equations instead of a
square system of equations is because, expanding zHBz = 1 gives only one real equation,
since B is symmetric positive definite, while (A− λB)z = 0 results in 2n real equations.
This results in a real (2n + 1) under-determined system of nonlinear equations in (2n + 2)
real unknowns. This will then be followed by presenting the real under-determined system
of nonlinear equations and an explicit expression for its Jacobian. If you have read the
previous two papers in this series, skip this section and the next and move to the section
3, otherwise keep reading.

If we let z = z1 + iz2 and λ = α + iβ, then the nonlinear system of equations (3) can be
written as

(A− λB)z =
[
A− (α + iβ)B

]
(z1 + iz2)

= (A− αB)z1 + βBz2 + i[(A− αB)z2 − βBz1], (4)

and

zHBz = zT
1 Bz1 + zT

2 Bz2.

Hence, (2) implies

−1
2

zHBz +
1
2
= −1

2
(zT

1 Bz1 + zT
2 Bz2) +

1
2
= 0.

Since (A− λB)z = 0, we equate the real and imaginary parts of (4) to zero and obtain the
2n real equations

(A− αB)z1 + βBz2 = 0, and (A− αB)z2 − βBz1 = 0.

This means, F(v) consists of the 2n real equations arising from (4) and one real equation
− 1

2 (z
T
1 Bz1 + zT

2 Bz2) +
1
2 = 0;

F(v) =

 (A− αB)z1 + βBz2
−βBz1 + (A− αB)z2

− 1
2 (z

T
1 Bz1 + zT

2 Bz2) +
1
2

 = 0, (5)
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where F : R(2n+2) → R(2n+1). The Jacobian, Fv(v) of F(v) with v = [z1, z2, α.β]T has the
following explicit expression

Fv(v) =

 (A− αB) βB −Bz1 Bz2
−βB (A− αB) −Bz2 −Bz1
−(Bz1)

T −(Bz2)T 0 0

 , (6)

and is a (2n + 1) by (2n + 2) real matrix. We define the real 2n by 2n matrix M as

M =

[
(A− αB) βB
−βB (A− αB)

]
. (7)

Also, we form the 2n by 2 real matrix

N =

[
−Bz1 Bz2
−Bz2 −Bz1

]
=
[
−B2w B2w1

]
, (8)

consisting of the product of B2 =

[
B O
O B

]
and the matrix of right nullvectors (given in the

next equation) of M at the root, where

w =

[
z1
z2

]
, w1 =

[
z2
−z1

]
, (9)

and O is the n by n zero matrix. The Jacobian (6) can be rewritten in the following parti-
tioned form

Fv(v) =
[

M −B2w B2w1
−(B2w)T 0 0

]
=

[
M N

−(B2w)T 0T

]
, (10)

with M, N defined in (7) and (8) respectively. Note that because at the root,[
(A− αB) βB
−βB (A− αB)

] [
z1
z2

]
=

[
(A− αB)z1 + βBz2
(A− αB)z2 − βBz1

]
= 0,

this implies that w or its nonzero scalar multiple is a right nullvector of M. In the same
vein, we find[

(A− αB) βB
−βB (A− αB)

] [
z2
−z1

]
=

[
(A− αB)z2 − βBz1
−{(A− αB)z1 + βBz2}

]
= 0,

and w1 or its nonzero scalar multiple is also a right nullvector of M at the root.

Theorem 2.1. Assume that the eigenpair (z, λ) of the pencil (A, B) is algebraically simple. If z1
and z2 are nonzero vectors, then φ = {τ[wT

1 , 0, 0], τ ∈ R} is the eigenspace corresponding to the
zero eigenvalue of Fv(v) at the root.

Proof: See [8]

Corollary 2.1. : If the eigenpair (z, λ) of (A, B) is algebraically simple, then the Jacobian Fv(v) in
(10) is of full rank at the root.

Proof. See [8].
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Next, in order to solve the under-determined system of nonlinear equations (5), we need
to linearize F(v) = 0. After linearizing F(v) = 0, we have to solve the following under-
determined linear system of equations

Fv(v(k))∆v(k) = −F(v(k)). (11)

The following result which we state without a proof will be used in the later part of
this paper.

Lemma 2.1. : [7, p. 6] Let Fw(w) be of full rank. If

Fw(w)∆w = F(w),

is an under-determined linear system of equations, then its least squares solution

∆w = −Fw(w)T[Fw(w)Fw(w)T]−1F(w),

is orthogonal to the nullspace of Fw(w).

Proof. See [8]

Next, we state the following result which was proved in [9] and shows that the solu-
tion ∆v(k) obtained by solving the underdetermined system of nonlinear equations (11) is
equivalent to those obtained by solving a square, augmented linear system.

Lemma 2.2. : Let n(k) be the exact nullvector of Fv(v(k)). The solution ∆v(k) can be obtained via:

(a). solving the under-determined linear system of (2n + 1) real equations for the (2n + 2) real
unknowns ∆v(k) (11) and updating v(k+1) = v(k) + ∆v(k), or

(b). solving the square linear system of (2n + 2) real equations[
Fv(v(k))

n(k)T

]
∆v(k) = −

[
F(v(k))

0

]
. (12)

and updating v(k+1) = v(k) + ∆v(k). (Here, we neglect round off errors).

Proof. See [9].

The next section contains useful theoretical expressions that will help us in section 3 of
this paper.

2.1 Theoretical form for the Nullvector of the Jacobian (6)

In the proof of Lemma 2.2 at the tail end of last section, we made use of the exact nullvec-
tor (which we do not compute in practice) of the Jacobian (6). In this section, we give a
theoretical expression for the exact nullvector of the Jacobian (6) when not at the root. To
do this, we rewrite the under-determined linear system of equations (11) in a compressed
form, present two important theoretical relationships: (18) and (19) for the exact nullvector
of the Jacobian.
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Note that the matrix M defined by (7) is singular at the root. However, this section is
anchored on the assumption that when v is not at the root, M is nonsingular. First, we
define the 2n by 2n matrix J as (see, for example [10])

J =
[

0 I
−I 0

]
, (13)

and note that

Jw =

[
0 I
−I 0

] [
z1
z2

]
=

[
z2
−z1

]
= w1, (14)

defined by (9). The matrix J satisfies the following properties:

1. JT = −J.

2. JTJ = I2n, where I2n is the 2n by 2n identity matrix.

3. J2 = −I2n.

4. J commutes with M and B2, i.e., JM = MJ and JB2 = B2J.

5. For w ∈ R2n, wTB2Jw = wTJB2w = 0.

6. Let u be an unknown vector that solves Mu = B2w. By premultiplying both sides by
J we obtain JMu = JB2w and hence MJu = JB2w by the commutativity of M and J.
Therefore,

Mu = B2w, implies M(Ju) = JB2w. (15)

The equation Mu = B2w stems from expanding the shifted system (A− σB)y = Bz, into
its real and imaginary parts as in [2] for σ = α + iβ and z = z1 + iz2. For ease of notation
and for the rest of this section, we shall drop the superscripts (k) and write w+ = w + ∆w

where w+ = w(k+1), replace w(k) and [∆z(k)1

T
, ∆z(k)2

T
] with w and ∆w respectively e.t.c. As

earlier stated, we assume that the 2n by 2n matrix M is nonsingular except at the root. For
the rest of this section, our aim is to give an explicit theoretical expression for the nullvector
of (6).

Let the exact nullvector n of

Fv(v) =
[

M −B2w B2Jw
−(B2w)T 0 0

]
,

be defined as n = [nT
w, nα, nβ], where nw ∈ R2n, nα and nβ are real scalars, Jw and M are

defined respectively by (14) and (7). Hence,

[
M −B2w B2Jw

−(B2w)T 0 0

] nw
nα

nβ

 = 0,

then after expanding the matrix-vector multiplication, we obtain

Mnw − nαB2w + nβ(B2Jw) = 0 (16)

wTB2nw = 0. (17)
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From (16), Mnw = nαB2w− nβ(B2Jw), using the fact that J commutes with B2 and M, and
using (15) with B2 = I2n we obtain

nw = nαu− nβJu. (18)

Since w is B2-orthogonal to nw by virtue of (17), taking the B2-inner product of both sides
of the above with w yields

wTB2nw = nα(wTB2u)− nβ(wTB2Ju) = 0.

We may choose
nα = wTB2Ju, and nβ = wTB2u, (19)

since we never normalise n. Hence, nw is given by (18) with nα and nβ by (19). So we have
a formula for nw in terms of w and u obtained from (15). Therefore,

n = [nT
w, nα, nβ] = [(nαu− nβJu)T, (wTB2Ju), (wTB2u)].

We emphasise that in practice, we would never compute the solution of (15). It will be
used for purely theoretical purposes since we know that the Gauss-Newton solution, ∆v,
is orthogonal to n.

3 Square System of Equations for The Numerical Computation
of the Complex Eigenvalues of a Matrix for B = I

In the preceding section, we presented two main important theoretical relationships, (18)
and (19). In this section, we will make use of these relationships in our discussion but only
in the special case in which B = I. Moreover, in Section (2), we saw that the solution to the
under-determined system of nonlinear equations (5) for the numerical computation of the
complex eigenpair (z, λ) of the pencil (A, B) can be solved by the Gauss-Newton method
via QR factorization. It was also stated in Lemma 2.1 that the minimum norm solution to
the resulting linear system of equations is orthogonal to the nullspace. However, in Section
2, we used the result of Lemma 2.1 to add an extra equation to the under-determined linear
system of equations, so as to obtain a square one. This is because, at each iteration of
the computation, n(k)T

∆v(k) = 0 and so it does not change the solution, even though the
square linear system of equations gives a unique solution because the augmented Jacobian
is nonsingular.

Nevertheless, as mentioned in the last section, we would never compute n in practice,
but Theorem 2.1 guarantees the existence of a unique nullvector φ at the root. We will use
φ(k) defined by φ(k) = [z(k)2 ,−z(k)1 , 0, 0] as an approximation to the exact nullvector n and
show that the solution obtained by solving (11) is equivalent to the solution obtained by
solving [

Fv(v(k))

φ(k)T

]
∆v(k) = −

[
F(v(k))

0

]
, (20)

in the absence of round off errors. To do this, we will show that φ(k)T
∆v(k) = 0 for each k,

where ∆v(k) is given by (11) and this is the key result in this section.
This section is structured as follows, we begin by adding the extra equation n(k)T

∆v(k) =
0 to (11) in order to obtain the square linear system of equations (12). The main result in
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this section is Theorem 3.1, and Algorithm 1 is presented for computing the algebraically
simple eigenpair of A. Note that since M has been shown to be singular at the root in
section 2, this section is anchored on the assumption that when v is not at the root, M is
nonsingular, but this is acceptable since we use the construction here to prove a theoretical
result about the correction ∆v(k) while not at the root.

Consider the problem of solving the under-determined linear system of equations (11)
for the (2n + 2) real unknowns ∆v = [∆wT, ∆α, ∆β]. It was stated in Lemma 2.1 that the
minimum norm solution to an under-determined linear system of equations is orthogonal
to the nullspace. It is an application of this result that yields the following important
relationship,

0 = nT∆v = nT
w∆w + nα∆α + nβ∆β, (21)

where we have dropped the superscript (k) in α, β, n, w and v. We begin by writing the
linear system of equations (11) in expanded form as

[
M −w Jw
−wT 0 0

] ∆w
∆α
∆β

 =

[
−Mw

1
2 (w

Tw− 1)

]
, (22)

or,

M∆w− ∆αw + ∆βJw = −Mw

−wT∆w =
1
2

wTw− 1
2

.

After rearrangement, the first equation reduces to

Mw+ − ∆αw + ∆βJw = 0. (23)

By multiplying both sides of the second equation by 2, we obtain:

2wT∆w + wTw = 1.

This in turn reduces to
wT(w + 2∆w) = 1. (24)

Since w+ = w + ∆w, 2∆w = 2w+ − 2w and w + 2∆w = 2w+ −w, then wT(w + 2∆w) =
wT(2w+ −w) = 2wTw+ −wTw. Consequently,

wTw+ =
1
2
(wTw + 1). (25)

The combined set of equations (23) and (25), which is the simplified form of (22), can be
expressed as: [

M −w Jw
−wT 0 0

] w+

∆α
∆β

 =

[
0

− 1
2 (w

Tw + 1)

]
. (26)

Now, if we expand along the first row of (26), then

Mw+ = ∆αw− ∆βJw. (27)
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This means that we could solve (26) by solving

Mu = w, and MJu = Jw,

(by Property 6 of J after (14)), for u, after which the solution of (27) is given by

w+ = ∆αu− ∆βJu. (28)

If we add the nullvector n to the last row of (22) with B = I and using (21), then M −w Jw
−wT 0 0
nT

w nα nβ

∆w
∆α
∆β

 =

 −Mw
1
2 (w

Tw− 1)
0

 .

One can also add n to the last row of (26) to yield M −w Jw
−wT 0 0
nT

w nα nβ

w+

∆α
∆β

 =

 0
− 1

2 (w
Tw + 1)

nT
ww

 . (29)

By expanding the middle row of (29), wTw+ = 1
2 (w

Tw + 1). But from (28), w+ = ∆αu−
∆βJu. This implies that, by taking the inner product of both sides with w, yields

wTw+ = ∆α(wTu)− ∆β(wTJu) =
1
2
(wTw + 1).

Using the definition (19) for nα and nβ with B = I, we obtain

nβ∆α− nα∆β =
1
2
(wTw + 1), (30)

where the unknown quantities ∆α and ∆β are to be determined, so we need an extra equa-
tion to be able to do so. Note that by using nw = nαu− nβJu, and (19) we can simplify

nT
ww = nαuTw− nβuTJTw

= nαuTw + nβuTJw

= (wTJu)(uTw) + (wTu)(uTJw)

= −(wTJTu)(uTw) + (wTu)(uTJw)

= −[(Jw)Tu](wTu) + (wTu)[uT(Jw)]

= −(wT
1 u)(wTu) + (wTu)(uTw1)

= 0.

Now, after expanding along the third row of (29), we have

nT
ww+ + nα∆α + nβ∆β = nT

w(w + ∆w) + nα∆α + nβ∆β

= nT
ww +

(
nT

w∆w + nα∆α + nβ∆β
)︸ ︷︷ ︸

=0

= nT
ww

= 0.
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If we substitute the expression (18) for nw and (28) for w+ into the left hand side, then one
obtains

0 = nT
ww+ + nα∆α + nβ∆β

=
[
nαuT − nβ(Ju)T][∆αu− ∆βJu

]
+ nα∆α + nβ∆β. (31)

Furthermore, by expanding the first term on the right hand side, using the properties of J,
then [

nαuT − nβ(Ju)T](∆αu− ∆βJu) = nα∆αuTu + nβ∆βuTJTJu

= nα∆α‖u‖2 + nβ∆β‖u‖2

=
(
nα∆α + nβ∆β

)
‖u‖2.

Consequently, (31) becomes(
nα∆α + nβ∆β

)
‖u‖2 + nα∆α + nβ∆β = (1 + ‖u‖2)(nα∆α + nβ∆β) = 0.

Observe that because u is real, (1 + ‖u‖2) is nonzero. Accordingly, after dividing both
sides by (1 + ‖u‖2), then

nα∆α + nβ∆β = 0. (32)

We combine the two equations (30) and (32) below[
nβ −nα

nα nβ

] [
∆α
∆β

]
=

[ 1
2 (w

Tw + 1)
0

]
,

and compute ∆α, ∆β simultaneously. The matrix on the left hand side is always nonsingu-
lar except at the root (in which case all entries are zero). Observe that

wTJT∆w = −wTJ∆w

= −wTJ(w+ −w)

= −wTJw+ + wTJw

= −wTJw+,

where we have used the fact that wTJw = 0 for all w, so that (32) can now be applied to
simplify wTJT∆w as

wTJT∆w = −wTJw+

= −wTJ(∆αu− ∆βJu)

= −wT(∆αJu + ∆βu)

= −
[
∆α(wTJu) + ∆β(wTu)

]
= −

[
nα∆α + nβ∆β

]
= 0. (33)

Notice that we have used the property J2 = −I2n to arrive at the third to the last step above
and the definition (28) for w+. Therefore, we have proved the key result

wTJT∆w = 0.

The above analysis leads to the following fundamental result.
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Theorem 3.1. Let φ(k) = [(Jw)T, 0, 0] be an approximation to the exact nullvector n(k) of the
Jacobian

Fv(v(k)) =

[
M −w Jw
−wT 0 0

]
,

for k = 0, 1, 2, 3, · · · .

(a). The augmented Jacobian matrix  M −w Jw
−wT 0 0
(Jw)T 0 0

 , (34)

is nonsingular at an algebraically simple eigenvalue of Az = λz.

(b). The (unique) solution of M −w Jw
−wT 0 0
(Jw)T 0 0

∆w
∆α
∆β

 =

 −Mw
1
2 (w

Tw− 1)
0

 , (35)

is identical to the least squares solution of the under-determined system[
M −w Jw
−wT 0 0

] ∆w
∆α
∆β

 =

[
−Mw

1
2 (w

Tw− 1)

]
. (36)

Proof:

(a). At the root φ = n and since the real (2n + 1) by (2n + 2) Jacobian (6) has been shown
to be of full rank in Corrolary 2.1, so adding the (2n + 2)th row, nT to the Jacobian
(6) increases the row rank by one (since the nullvector, n is orthogonal to every row
of Fv(v)). Hence,

rank
([

Fv(v)
nT

])
= 2n + 2.

Therefore, the matrix in (34) is nonsingular at the root.

(b). Recall that ∆v(k) = [∆wT, ∆α, ∆β]. By using (33), this implies

φ(k)T
∆v(k) = (Jw)T∆w = wTJT∆w = 0.

Hence, showing that both (35) and (36) are equivalent for k = 0, 1, 2, 3, · · · ..

The above result means that instead of solving (11) or (36) via QR factorisation at a cost
of approximately 32

3 n3 floating point operations, we could use LU factorisation to solve
(35) more efficiently at a cost of approximately 16

3 n3. We now present Algorithm 1 for
computing the algebraically simple complex eigenpair of A.

Stop Algorithm 1 as soon as
‖∆v(k)‖ ≤ tol.

We consider the same example as in [8] with the same starting guesses but with a different
algorithm: Algorithm 1. For comparison sake, we present the result table in that paper for
ease of reference as follows.
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Algorithm 1 Eigenpair Computation using Newton’s method

Require: A, w(0) = [z(0)1 , z(0)2 ], v(0) = [w(0), α(0), β(0)]T, kmax and tol.
1: for k = 0, 1, 2, . . . until convergence do
2: Compute the LU factorisation of M −w Jw

−wT 0 0
(Jw)T 0 0

 .

3: Form

d(k) =

 −Mw
1
2 (w

Tw− 1)
0

 .

4: Solve the lower triangular system Lc(k) = d(k) for c(k).
5: Solve the upper triangular system U∆v(k) = c(k) for ∆v(k).
6: Update v(k+1) = v(k) + ∆v(k).
7: end for

Ensure: v(kmax) = [w(kmax), α(kmax), β(kmax)]T.

k α(k) β(k) ‖w(k+1) −w(k)‖ ‖λ(k+1) − λ(k)‖ ‖∆v(k)‖ ‖F(v(k))‖
0 0.00000e+00 2.50000 3.8e+00 7.8e-01 3.9e+00 3.6e+01
1 2.34253e-01 1.75371 1.8e+00 2.2e-01 1.8e+00 7.8e+00
2 1.18745e-01 1.94460 8.1e-01 1.4e-01 8.2e-01 1.7e+00
3 4.47044e-02 2.06484 2.5e-01 7.0e-02 2.6e-01 3.4e-01
4 8.82702e-03 2.12479 3.1e-02 1.7e-02 3.5e-02 3.7e-02
5 2.48114e-04 2.13905 4.8e-04 5.2e-04 7.1e-04 7.1e-04
6 1.80714e-05 2.13950 1.2e-07 2.5e-07 2.8e-07 2.8e-07
7 1.81999e-05 2.13950 2.1e-14 2.9e-14 3.6e-14 6.0e-14

Table 1: Values of α(k) and β(k) using the algorithm in [8]. Columns 6 and 7 show that the
results converged quadratically for k = 3, 4, 5, 6 and 7.

Example 3.1. Consider the 200 by 200 matrix A bwm200.mtx from the matrix market library [11].
It is the discretised Jacobian of the Brusselator wave model for a chemical reaction. The resulting
eigenvalue problem with B = I was also studied in [2] and we are interested in finding the rightmost
eigenvalue of A which is closest to the imaginary axis and its corresponding eigenvector.

In this example, we take α(0) = 0.0, β(0) = 2.5 in line with [2] and took z(0)1 = 1/2‖1‖ and
z(0)2 =

√
3

2 1/‖1‖, where 1 is the vector of all ones. We stopped Algorithm 1, when

‖∆v(k)‖ ≤ 5.6× 10−14.

The results of Table 2 agree with those of Table 1 but with little disparities in the last two columns.
This indeed show that the solution obtained by solving the under-determined system (11) is equiv-
alent to those obtained by solving the square system (35), the disparities in the eighth and nineth
rows are caused by round off errors. It also shows that the algorithm presented in [8] which involves
solving an under- determined system of linear equatioins and Algorithm 1 are equivalent which is
our aim.
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k α(k) β(k) ‖w(k+1) −w(k)‖ ‖λ(k+1) − λ(k)‖ ‖∆v(k)‖ ‖F(v(k))‖
0 0.00000e+00 2.50000 3.8e+00 7.8e-01 3.9e+00 3.6e+01
1 2.34253e-01 1.75371 1.8e+00 2.2e-01 1.8e+00 7.8e+00
2 1.18745e-01 1.94460 8.1e-01 1.4e-01 8.2e-01 1.7e+00
3 4.47044e-02 2.06484 2.5e-01 7.0e-02 2.6e-01 3.4e-01
4 8.82702e-03 2.12479 3.1e-02 1.7e-02 3.5e-02 3.7e-02
5 2.48114e-04 2.13905 4.8e-04 5.2e-04 7.1e-04 7.1e-04
6 1.80714e-05 2.13950 1.2e-07 2.5e-07 2.8e-07 2.8e-07

7 1.81999e-05 2.13950 1.3e-14 8.4e-14 8.5e-14 6.3e-14
8 1.81999e-05 2.13950 1.0e-14 4.8e-14 4.9e-14 5.3e-14

Table 2: Values of α(k) and β(k) of Example 3.1. Columns 5 and 6 show that the results
converged quadratically for k = 3, 4, 5, 6 and 7.

Conclusion

In this work, we have shown both theoretically and computationally with a numerical
example that the solution obtained by solving an under-determined linear system of equa-
tions and a square system are equivalent in the absence of round off errors. This means
that instead of solving (11) or (36) via QR factorisation at a cost of approximately 32

3 n3

floating point operations, we could use LU factorisation to solve (35) ‘more efficiently’ at a
cost of approximately 16

3 n3. It will be interesting to see what can be proved to link the real
square system of equations with the original complex one, that is (3); at least in the case
B = I.
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