
Vol 7. No. 2 - June, 2014
African Journal of Computing & ICT

© 2014 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

 27

Computationally Efficient Algorithm for computing Cumulative Grade Point

Average of a Large Number of Students

R.O. Akinola

Department of Mathematics

Faculty of Natural Sciences

University of Jos

Jos, Plateau State, Nigeria

Computational Biology Group

Faculty of Health Science

University of Cape Town, Cape Town, South Africa.

Corresponding email: roakinola@yahoo.com

ABSTRACT

One major problem faced by Level Coordinators at the University of Jos is the computation of their students' Cumulative Grade

Point Average (CGPA) in senate format at the end of each session. To many a lecturer, it is laborious, time wasting and a

frustrating exercise. This paper proposes a python based algorithm for computing each students CGPA for an entire level in a fast

and less tasking manner. It surpasses an earlier algorithm proposed by the same author which uses octave and has the capability

to compute the TCE, TGP, TGR, GPA, their cumulatives as well as state which courses are to be repeated or if a student passed

(i.e., no carry over) by default. The algorithm can also state each student’s class of degree which makes it more powerful.

Keywords: Computation, Algorithms, Cumulative Grade Point Average, Students & Results.

African Journal of Computing & ICT Reference Format:

R.O. Akinola (2014). Computationally Efficient Algorithm for computing Cumulative Grade Point Average of a Large Number of Students.

Afr J. of Comp & ICTs. Vol 7, No. 2. Pp27-32.

1. INTRODUCTION

Level coordinators at the University of Jos have this

seemingly daunting task of computing the CGPA of their

students. At the University of Jos, there is an ICT directorate

which ’organises’ workshops on how to generate this senate

format but due to heavy workload, many a lecturer do not

attend such workshops. Coupled with the fact that it demands

that each lecturer enters the individual scores of each student

in all courses into an already prepared template under

‘pressure’ or undue supervision. Most lecturers find this

herculean. In addition, the problem of power outages and

possibility of systems crashing makes that option a no-go-

area; and that is why lecturers who are assigned as level

coordinators prefer to prepare their senate format themselves.

Of course, this is at a cost, discouraging and painful.

Often times mistakes are made in computing students CGPA

and it takes a lot of effort and administrative bureaucracies to

get them corrected once results have been presented to senate.

When we talk about the senate format, we mean a summary

table showing the number of courses registered by each

student in a particular level, the mark, corresponding grade

point obtained in each course, the Total Credit Earned (TCE),

Total Credit Registered (TCR), the Total Grade Point (TGP),

Gross Point Average (GPA).

Their respective cumulatives for example : Cumulative Total

Credit Earned (CTCE), Cumulative Grade Point Average

(CGPA) as well as a remark column which states if a student

passed (without carry overs) or failed (with carry over and

which course(s) to be repeated). This table is normally drawn

by each level coordinator and presented to the university

senate at the end of each successive academic session.

However, one of the inherent problems is that to compile the

senate format comprises of getting the list of all the students in

a particular level of a department, knowing the number of

courses each student registered, ability to collate the results

from the various departments and recording them accordingly

in a table as shown below (Table 1):

Vol 7. No. 2 - June, 2014
African Journal of Computing & ICT

© 2014 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

 28

Table 1: Table containing all the known quantities for each student.

The approach for collating the data in this format can be direct

vis-vis, recording the mark and grade point from the result

collected from a certain department or indirectly, by entering

each student courses in sheets of paper before transferring

them into this final format. However, for the purpose of this

article, we will not attempt to describe the various means of

collating the senate format. We assume that the various data

have been collected and the table drawn, what then remains is

how to compute the respective CGPA. Before we continue,

lets define the terms GPA and CGPA. GPA is the ratio of TGP

to TCR and it is given by the formula

GPA =TGP/TCR -----------------(1)

while CGPA is defined as the ratio

CGPA=CTGP/CTCR. ------------(2)

An interaction with some colleagues at the university revealed

how they compute their students CGPA's. One way a staff

member computed the CGPA is to use excel. This is done by

writing adequate formula in excel to compute the TGP and

TCR. However, their technique still relies on using a

calculator to take the ratio of the TGP and the TCR afterwards.

The second approach adopted at the departmental levels, is

manual. This technique is herculean and can be very

frustrating. Both methods used by fellow lecturers suffers the

inability to state which course(s) a student is to repeat and

students' class of degree has to be manually entered.

All these are circumvented by the proposed algorithm. In

addition, as mentioned in the abstract, an earlier algorithm by

the same author suffers the disadvantage that the user has to

type in each students grade point as a result is subject to error,

the user still has to type the computed CGPA and fill in the

remark section by brute force. In this paper, we propose a

Python-based algorithm for computing a students CGPA. It is

fast, reliable, efficient, does not require the user to supply any

input except the file containing the student names, score, grade

point and courses. In the next paragraph, we give a brief

introduction of Python.

Python is an object-oriented, high-level programming

language [4]. Other examples of high-level programming

languages are C, C++, Java and Perl. Low-level programming

languages are often-times termed machine or assembly

languages. Thus, programs written in high level programming

languages needs to be processed into low-level ones before

they can run successfully. Hence, the extra time spent in

processing is a ‘small disadvantage’ of high-level languages.

However, high-level languages are portable, easier to code,

shorter, more likely to be correct and easier to read. Programs

written in Python are executed by an interpreter and that is

why it is often regarded as an interpreted language [4]. The

interpreter is used in two ways viz.: script and interactive

mode. In the later mode, Python programs are typed by the

user while the interpreter displays the result. In the script

mode, you save the code in a script file before using the

interpreter to execute or run the contents of the file.

Python scripts are usually saved with names that end with .py.

This means if you are working in an environment such as a

UNIX command window and have a script named

Vol 7. No. 2 - June, 2014
African Journal of Computing & ICT

© 2014 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

 29

filename.py, you type python filename.py. For more

information on Python and how to download it, visit

http://python.org [1].

2. METHODOLOGY

In this section, we present the algorithm and explain some

lines of the code. We assume that the various entries been

entered into their various columns as shown in Table 1. The

problem is simple and formulated as given the following

known quantities: names, matriculation number, Mode of

Entry (ME), Maximum Number of Semester Spent (MNSS),

the Number of Semesters Spent (NSS), course codes, course

GP, each students course mark and corresponding course

grade point; for each student, find/solve/compute for the

unknown quantities: TCE, TCR, TGP, GPA, CTCE, CTCR,

CTGP, CGPA, remarks and outputting the results in excel

format. Each row of the table represents all the knowns for

each student and each empty cell means that the student did

not register the course. To do this, the lecturer supplies the file

containing the known quantities in .txt format by just copying

the content of an excel format file and saving it into .txt

format.

The main part of the program is the function gpa(line, courses,

z) which depends on three parameters line, courses and z. The

first dependent variable line consists of the content of each cell

in each row. Of course, this depends solely on splitting each

row and its tab delimited columns into individual entities or

cells, where each cell is numbered in python format from zero

unto the last column n = 31 (The total number of columns n in

Table 1 is 32). The second variable courses consists of

concatenating rows 6 and 7 beginning from column 7; for

example, part of the main program concatenates into

MTH101, MTH102, · · · , GST104. Observe that in the

concatenation, the columns ’GP’ are all skipped. The third

variable z consists of all the credit loads starting from row 8,

column 7. Mathematically, courses and z can be thought of as

vectors.

We start by initializing Total_GP, Total_Credit_Registered

and Total_Credit_Earned to zero in lines 2-4 of the function

gpa(line, courses, z) and j=7 represents the column in which

the score starts. Line 6 shows an initialization of Remark to

“RPT”. Lines 7 to 18 is the main loop for computing the GPA.

The if line[j] means, if the line corresponding to column j is

non zero, mind you because we are starting with j=7 and

python starts counting from zero, this means that the code

starts looping from the 8th column and above. The line

grade=int(line[j]) means, assign each grade point of each

student in each course to the variable named grade, for

example, for student with matriculation number

UJ/20Y/NS/X1, in the first course MTH101, the student

scored 74 and the grade point is 5, hence grade= 5.

Since the corresponding credit load is 3, this means

credit_earned=3∗5=15 (since credit_earned=grade*credit

load). The next line increments the Total_GP from zero to 15,

Total_Credit_Registered is also incremented from zero to 3

because Total_Credit_Registered+=float(credit_load). The

next line ascertains if the grade is not zero or if the candidate

passed a particular course, increment the Total_Credit_Earned

by the credit load and since the first student passed the course,

the Total_Credit_Earned becomes 3. The next line of the

program checks if the student actually failed the course, if yes,

then the variable Remark which already had been initialized to

‘RPT’ is concatenated by the course code, otherwise, the loop

is skipped. The j+=2 means subsequently increment j by 2 to

9, 11, 13 etc. The next course is now in line to be considered

and so on and so forth until all the different variables have

been computed, incremented or concatenated as the case

maybe. After all the nonzero columns for each particular

student have been considered, the code then computes the

GPA for a particular student by the already given ratio

GPA =Total_GP/Total_Credit_Registered ---------(3)

As noted in the comment in the body of the program, there can

never be a case of division by zero in the above formula

because the Total_Credit_Registered add up. The last line in

the function shows the output or desired result that we hope to

use in the main body of the program. Therefore, the program

returns Total_Credit_Registered, Total_Credit_Earned,

Total_GP, GPA, Remark as integers, integers, integers, float

and string respectively. We will not bother to explain the nitty-

gritty of the main body of the program because it is cosmetics,

the last line of the main body of the program calls the main

function and assigns each of the variables to each of the ouput

of the function in that order.

def gpa(line, courses, z) :

 Total_GP = 0.0

 Total_Credit_Registered = 0.0

 Total_Credit_Earned = 0.0

 j = 7 #where

the scores begin

 Remark = "RPT"

 for course, credit_load in zip(courses, z) :

 if line[j] :

 if 0 <= float(line[j]) <= 5 :

#This ensures that no GP is greater than five

 grade = int(line[j])

 credit_earned =

grade*credit_load

 Total_GP +=

float(credit_earned)

 Total_Credit_Registered += float(credit_load)

 if grade != 0 :

 Total_Credit_Earned += float(credit_load)

 if grade == 0 :

 Remark +=

" "+course+","

 else :

 sys.stderr.write("\nPlease check your file to see if

there is no error\n")

Vol 7. No. 2 - June, 2014
African Journal of Computing & ICT

© 2014 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

 30

 sys.stderr.write("\n!!!!!!!One of the credit loadS is

above five!!!!!!\n")

 print "!Ooops, the

following student has an incorrect field: ", line[2]

 print "One of the

courses has a GP greater than five. That is", line[j]

 sys.exit(0)

 #else :

 # print 'This/these students have

VOLUNTARILY WITHDRAWN', line[2]

 j += 2

 if j == m+1 : break

 GPA = Total_GP/Total_Credit_Registered

#???division by zero is not possible because courses

registered add up

 return int(Total_Credit_Registered),

int(Total_Credit_Earned), int(Total_GP), round(GPA, 2),

Remark

#Part of the Main Program

x = []

y = []

z = []

w = "\t"+'TCR'+"\t"+ 'TCE' +"\t"+ 'TGP' +"\t"+ 'CGPA'

+ "\t" + 'REMARK'

tab5 = ""

for m in range(0,5) :

 tab5 += "\t"

tab6 = ""

for m in range(0, 6) :

 tab6 += "\t"

mm = 6 #Start from the seventh column but python starts

counting from zero

for line in file :

 line = line.rstrip()

 line = line.split("\t")

 n = len(line) - mm #Total columns

containing grades and gp minus redundant columns

 m = len(line) #Total number of

columns in senate format

 print line

 if len(line) > 1 :

 if line[0] == "S/NO" or line[0] == "S/N"

:

 ww = functools.reduce((lambda

x, y : str(x) +"\t"+ str(y)), line[0:6]) + w + "\t" + \

 functools.reduce((lambda x, y :

str(x)+"\t"+str(y)), line[6:]) + w

 out.write(ww +"\n")

 for i in range(mm, m, 2) :

 x.append(line[i])

 if line[0] == '' : #Picking the empty

cells and columns involving 101, 102, 103 and grade points

 ww = tab5 +

functools.reduce((lambda x, y : str(x) + "\t"+ str(y)), line[0 :

]) + tab6

 out.write(ww + "\n")

 for i in range(mm, m, 2) :

 if int(line[i]) >= 100 :

 y.append(line[i])

 if int(line[i]) <= 5 :

 z.append(float(line[i]))

 if len(x) == 0 or len(y) == 0 or len(z) ==

0 :continue #to avoid instances of length zero

 if len(x) == len(y) == len(z) :

 courses = [x+y for x, y in zip(x,

y)]

 if line[0] == '' : continue

 Total_Credit_Registered,

Total_Credit_Earned, Total_GP, GPA, Remark = gpa(line,

courses, z)

We bring this section to a close by presenting a glossary of

terms used.

1. TCE is the summation of all Credit units of courses

passed by a student. Its cumulative (CTCE) is TCE

taken over more than one session.

2. TCR is the sum of all Credit units registered by a

student. Its cumulative (CTCR) is TCR taken over

more than one session.

3. TGP, first take the product of Grade Point and

Credit unit for each course and sum over all courses.

Its cumulative (CTGP) is TGP taken over more than

one session.

4. GPA and CGPA already defined.

Next, we briefly describe the cost of the algorithm in terms of

floating point point operations. Basically, we base our

assumption of the efficiency of the algorithm on the fact that it

is just a matrix vector multiplication and no matter how large

the number of students are, it is sure to deliver in good time.

Vol 7. No. 2 - June, 2014
African Journal of Computing & ICT

© 2014 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

 31

Floating Point Operations (Flops) of the Algorithm
For the inner product of two n-vectors x and y,

, ---------(4)

there are n multiplications and n-1 additions which equals 2n-

1 flops or ~o(n) for n large. In the present algorithm, if we

refer to the grade point of each student as an element of a

matrix, this means the entire students grade points can be

represented by a matrix say A. In the same vein, the credit

units of a particular class can be thought of as an n-vector

whose elements consists of individual course credit unit and a

zero if a student did not offer the course. If m (total number of

students in context) is the number of rows of the matrix A and

n the number of columns, then this connotes a matrix vector

operation. Hence, each element requires an inner product of

length n at a cost of 2n-1 flops. The cost of the matrix-vector

multiplication is then (2n-1)m floating point operations

(flops). For m large, this results into 2mn flops [2] and [3].

3. EXAMPLES

In this section, we show the expected output of running the

program applied on the Table 1. The format of the original file

is .xls or .xlsx excel format or any tab delimited format.

The user needs to copy, paste and save it into a .txt format. If

for example, the above table has been saved as filename.txt,

then to run the program, you just type python senate_100.py

filename.txt. The expected output will be in

filename_Senate_Format.xls. The results are as shown in

Table 2 and 3. Note that in both tables, we have decided to

collapse/add ‘necessary’ columns/rows for easy viewing

because the whole spreadsheet is big.

1. Ensure that the Python program is in the same

directory/folder as your working directory.

2. In your working directory, open the excel file containing

the known rows and columns.

3. In the menu bar, click Edit and Select All.

4. While all the rows and columns are selected, right click

and choose Copy.

5. Open gedit or any text editor of your choice and paste.

6. Save the file as filename.txt, where filename is any name

of choice.

7. On a Python shell/window type : python senate 100.py

filename.txt.

8. If everything is in order, you will see: !!!!!!!!!!Hurray,

Program was successful and you should see output as

filename_Senate_ Format.xls.

Table 2: While Table 1 shows the knowns, this table shows the result of applying the our algorithm to the inputs in Table

1. The unknown quantities TCR, TCE, TGP, CGPA and Remark are now automatically outputted in their correct

columns. Note that we 'deleted' unwanted columns to show the results since the spreadsheet is quite big and cannot fit in

adequately.

Vol 7. No. 2 - June, 2014
African Journal of Computing & ICT

© 2014 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

 32

Table 3: We try to fit in the knowns and computed unknown quantities into a table and because of how big the

spreadsheet is, the font sizes appear very tiny.

4. CONCLUSION

In this work, we have presented an efficient algorithm for

computing the CGPA of students in senate format at the

University of Jos which surpasses an earlier algorithm by the

same author [5]. The present algorithm is self starting, reliable,

does not require the user to supply any information except

those already in the pre-compiled senate format file, and can

fill in the gaps with the required unknowns or information

(TCE, TCR, TGP, GPA, Remarks etc.) in the desired format

with great speed and accuracy. The algorithm will enhance

early turnover rate of departmental senate formats and safe

level coordinators the nightmare of doing the required

computations manually or in sheets of papers. The program

can be obtained directly from the author via email.

Future Work
The program presented in this paper requires the user to

convert a .xls/.xlsx file to its .txt extension by simply cutting

and pasting. However, this can be circumvented and it will be

great to see how this program can be hosted on the web as a

back-end to a php or html script. All these are achievable but

more time is needed to make this a reality.

Acknowledgement
The author wishes to thank Professor L. S. O. Liverpool of the

Department of Mathematics, University of Jos for his inspiration in

writing the first article and the Vice-Chancellor of the University of

Jos, Professor Hayward Mafuyai. My gratitude also goes to Mr

Nimchak of the Appointment and Promotion Committee of the

University of Jos for his role in making sure I came to Cape Town to

pursue my post doctoral studies. My son TiOluwani (plus wife) too

deserves commendation as he was born while I was away and to Prof.

Nicola J. Mulder, my Principal Investigator at the Computational

Biology Group, Faculty of Health Sciences, University of Cape Town,

South Africa. Developers of open source software are hereby duely

acknowledged.

REFERENCES

[1] Python: http://python.org

[2] 2.Complexity of matrix algorithms.

http://www.seas.ucla.edu/~vandenbe/103/lectures/fl

ops.pdf

[3] G. Golub and C. F. Van Loan: Matrix

Computations, pages 2-4, third edition, John

Hopkins University Press 1996

[4] Downey A, Think Python: How to Think Like a

Computer Scientist Green Tea Press, Needham,

Massachusetts, http://www.thinkpython.com, 2012.

[5] R. O. Akinola: An Octave Algorithm for computing

a Student’s Cumulative Grade Point Average.

Publications of the ICMCS: Volume 5, Pages 67-76.

(2012).

Author’s Brief

Dr Richard Olatokunbo Akinola is a

lecturer in the Department of Mathematics,

University of Jos. He attended Government

Secondary School Laranto, Jos-Plateau

State (Can anything good come out of

Nazareth?) and a graduate of Mathematics

from the University of Jos. Holds a masters

degree cum laude from Stellenbosch

University, South Africa and a Ph.D in Applied Mathematics

from the University of Bath, UK. He is currently doing

postdoctoral research in Computational Biology at the Faculty

of Health Sciences, University of Cape Town, South Afica.

My research interests is in Numerical Analysis and Scientific

Computing. To God be the glory for bringing me thus far

because a man can receive nothing except it is given to him

from above.

