
International Journal of Mathematics and Statistics Invention (IJMSI) 

E-ISSN: 2321 – 4767 || P-ISSN: 2321 - 4759 

www.ijmsi.org || Volume 2 || Issue 2 || February - 2014 || PP-01-06 

www.ijmsi.org                                               1 | P a g e  

Optimal expressions for solution matrices of single – delay 

differential systems. 

C. Ukwu and E.J.D. Garba 
Department of Mathematics 

University of Jos, P.M.B 2084, Jos, Nigeria 

 

ABSTRACT: This paper derived optimal expressions for solution matrices of single – delay autonomous 

linear differential systems on any given interval of length equal to the delay h for non –negative time periods. 

The formulation and the development of the theorem exploited an earlier work Ukwu (2013b) on the interval [0, 

4h]. The proofs were achieved using ingenious combinations of summation notations, multiple product 

notations and integrals, as well as the method of steps to obtain these matrices on successive intervals of length 

equal to the delay h. This theorem globally extends the time scope of applications of these matrices to the 

solutions of initial function problems, rank conditions for controllability and cores of targets, constructions of 

controllability Grammians and admissible controls for transfers of points associated with controllability 

problems.  
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I. INTRODUCTION 
The qualitative approach to the controllability of functional differential control systems have been areas 

of active research for the past fifty years among control theorists and applied mathematicians in general. This 

circumvents the severe difficulties associated with the search for and computations of solutions of such systems.  

Unfortunately computations of solutions cannot be wished away in the tracking of trajectories and 

many practical applications. Literature on state space approach to control studies is replete with variation of 

constants formulas, which incorporate the solution matrices of the free part of the systems. See Chukwu (1992), 

Gabsov and Kirillova (1976), Hale (1977), Manitius (1978), Tadmore (1984), and Ukwu  (1987, 1992,1996  ). 

Regrettably no author has made any attempt to obtain general expressions for such solution matrices involving 

the delay .h  
The usual  approach is  to start from the interval [ 0 , ]h  and compute the solution matrices and solutions 

for given problem instances and then use the method of steps to extend these to the intervals [ , ( 1) ],kh k h for 

positive integral k , not exceeding 2, for the most part.  Such approach is rather restrictive and doomed to failure 

in terms of structure for arbitrary k . In other words such approach fails to address the issue of the structure and 

computing complexity of solution matrices and solutions quite vital for real-world applications. The need to 

address such short-comings has become imperative; this is the major contribution of this paper, with its wide-

ranging implications for extensions to double-delay and neutral systems and holistic approach to controllability 

studies. 

II. PRELIMINARIES 
We consider the class of double-delay differential systems: 
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Note: ( )Y t is a generic solution matrix for any t  R  and 
n

I  is the identity matrix of order .n   

The solution matrices will be obtained piece – wise on successive intervals of length .h  

     Ukwu (2013b) obtained the following expressions for the solution matrices, 

( )  o n   , fo r  
k

Y t J {0 , , 3} :k    
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He also interrogated some topological dispositions of the solution matrices and deduced that the solution 

matrices are continuous on the interval [0,4h] but not analytic   

{0 , , 2 , 3 } .t h h h  These results are consistent with the existing qualitative theory on ( ) .Y t  See  Chukwu 

(1992), Hale (1977), Tadmore (1984) and Ukwu (1987, 1996). See also analytic function (2010) and Chidume 

(2007) for discussions on analytical functions and topology. 

The objective of this paper is to formulate and prove a theorem on the general  

 e x p re s s io n  fo r  ( ) o n   , fo r   0 , 1, ,
k

Y t J k   by appropriating the above expression for ( ) .Y t
 

 

1. Theorem: Ukwu-Garba’s Solution Matrix Formula for Autonomous, Single – Delay Linear Systems: 
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Proof 

The expressions (2) and (3) prove (6) and (7) respectively.  If 2 ,j  in (8) we obtain: 
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The expression (9) agrees with (4); therefore the theorem is valid for 
2
.t J  If 3,j  in (8), we get: 
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This result is consistent with the expression (5). Therefore the theorem is also valid for 
3
.t J  The rest of the 

proof is inductive. Assume the validity of the theorem on , 4
p

J p k  for some integer .k  Then on 
1k
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we 

have: 
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     the induction hypothesis applies  to  
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Therefore: 
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Note the use of change of variables in obtaining (23) and that  j = k + 1 zeros out (21). 

(22) and (24) add up to yield: 
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Hence (21) and (26) add up to yield: 
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So, the theorem is valid on 
1k

J


, and hence valid for all , {0 ,1, 2 , } .
k

J k    This completes the proof. 

3.1  Corollary 1 
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Proof 

The proof follows by straight-forward successive integration, noting that 
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The sum of the multiple integrals in (33) yields: 
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The expressions (31), (32) and (35) complete the proof of the corollary. 

3.2  Corollary 2 
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Proof 

The proof follows by straight-forward successive integration, noting that 
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3.3  Corollary 3 
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Proof 

Proof follows immediately by replacing 
0

 b y  a n d  d ia g ( )  b y  A a b b  in corollary 1. 

3.4 Remarks: Please note in particular that this result is consistent with the theorem in Ukwu and Garba 

(2013c). However it must be pointed out that it was that theorem that motivated our theorem and hence corollary 

3. 

III. CONCLUSION 
This article has completely determined the structure solution matrices which are indispensible for the 

determination of all solutions of single-delay autonomous differential and control systems. Moreover the 

ingenious combinations of summation notations, multiple product notations, multiple integrals and change of 

variable technique are unprecedented in the achievement of the desired proofs. The ideas exposed in this paper 

can be exploited to extend the results to double-delay and neutral systems. 
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