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ABSTRACT 
 

Aims: This paper seeks to analyse the characteristics of monthly rainfall pattern in Katsina City in a 
view to unveiling the trends and describing its dynamics so that adequate recommendations can be 
made for its modelling. 
Study Design: The analysis involves a complete statistical, trend, spectral and nonlinear analysis 
of the monthly rainfall time series recorded in Katsina.  
Place and Duration of Study: Location: Katsina City, Katsina State, Nigeria from 1990 to 2015; a 
period of 26 years. 
Methodology: Secondary data of daily rainfall recorded in Katsina city from 1990 to 2015 was 
collected from the Nigerian Meteorological Agency (NiMet), and monthly averages were taken to 
obtain the monthly rainfall data. The data was then subjected to statistical, trend, spectral and 
nonlinear analysis techniques to reveal the behavioural patterns in the rainfall and also to reveal its 
underlying dynamics for its future modelling and prediction. 
Results: The outcome of this analysis indicates that the monthly rainfall in Katsina exhibits an 
increasing trend with high variance and right-skewed distribution requiring a maximum of 6 
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independent variables to model its dynamics. The correlation exponent plot reached a saturation 
value of 5.892 confirming that the monthly rainfall in Katsina over the last 26 years exhibits low 
dimensional chaotic behavior while the largest Lyapunov exponent for the monthly rainfall time 
series in Katsina was also computed and found to be positive, having a value of 0.006055/month 
confirming the presence of deterministic chaos dynamics and is predictable for the next 165 
months.  
Conclusion: Since from the findings of this work it is confirmed that the rainfall in Katsina exhibits 
chaotic behavior with an increasing trend, it is recommended that more drainages and dams be 
built to provide steady supply of water for agricultural and domestic purposes as well as curtail the 
menace of flooding and drought which may occur as a result of global warming and climate 
change.  
 

 
Keywords:  Nonlinear dynamics; trend analysis; phase space reconstruction; phase portrait; correlation 

dimension; Lyapunov exponent. 
 

1. INTRODUCTION  
 
In recent times, scientists have laid more 
emphasis on the modelling of time series as a 
tool to ease the management and forecasting of 
the earth’s meteorological and hydrological 
resources. Time series represents a dynamic 
measure of a physical process over a given 
period of time and may be discrete or continuous 
[1]. The discovery of Chaos by Edward Lorenz in 
1961 [2], has brought about a great revolution in 
the mode of understanding and expressing most 
of these phenomena in nature. Chaos theory, the 
basis and foundation of nonlinear dynamics, is a 
tool that can be used for characterizing and 
modelling complex phenomena in nature such as 
rainfall data which has a higher variation 
coefficient [3]. Weather is a continuous, data-
intensive, multidimensional, dynamic and chaotic 
process and these properties make weather 
prediction a big challenge as the chaotic nature 
of the atmosphere implies the need for massive 
computational power required to solve the 
equations that describe the atmospheric 
conditions [4]. Climate indeed varies nonlinearly 
too, but this has not prevented scientists from 
making good predictions using advanced 
regression techniques. Science and technology 
have been applied to predict the state of the 
atmosphere in future time for a given location, 
and this is very important as it affects life on 
earth. Today, computational weather forecasts 
are made by collecting quantitative data about 
the current state of the atmosphere and using 
scientific understanding of atmospheric 
processes to numerically project how the 
atmosphere will evolve, but due to an incomplete 
understanding of the chaotic atmospheric 
processes, forecasts become less accurate as 
the range of forecast increases [5]. 

This paper is focused on undertaking a detailed 
behavioural analysis of the monthly rainfall in 
Katsina over the last twenty-six years so as to 
unveil its dynamics thereby characterizing the 
data for modelling and forecasting to boost the 
planning of agricultural activities in the nearest 
future.  
 
2. MATERIALS AND METHODS  
 
The behavioral analysis of daily rainfall in Katsina 
state will be undertaken in this research by 
applying the following techniques: statistical 
analysis of the data, trend and spectral analysis, 
and nonlinear analysis. 
 

2.1 Statistical Analysis 
 
Statistical analysis involves the computation of 
the arithmetic mean, variance and standard 
deviation, the coefficient of variation, signal-to-
noise ratio, range, kurtosis and skewness. 
Skewness is a measure of the asymmetry of the 
data around the sample mean. If skewness is 
negative, the data are spread out more to the left 
of the mean than to the right. If skewness is 
positive, the data are spread out more to the 
right. The skewness of the normal distribution (or 
any perfectly symmetric distribution) is zero. The 
skewness, S of a distribution with mean �  and 
standard deviation � is given as [6]: 
 

� =
�(���)�

��
                                                         (1) 

 
The parameter �(�)  represents the expected 
value of the quantity t. Kurtosis, on the other 
hand, is a measure of how outlier-prone 
(scattered and detached) a distribution is. The 
kurtosis of the normal distribution is 3 while 
distributions that are more outlier-prone than the 
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normal distribution have kurtosis greater than 3; 
with distributions that are less outlier-prone have 
kurtosis less than 3. The kurtosis, K of a 
distribution with mean � and standard deviation � 
is given as [6]: 
 

� =
�(���)�

��
                                                       (2) 

 
MATLAB statistics toolbox (R2014a) is used to 
achieve these computations. 
 

2.2 Trend Analysis 
 
In order to check the overall effect of the 
greenhouse effect and global warming on the 
rainfall pattern in Katsina, trend analysis was 
carried out using the following statistical tools:  
 
i. the correlation coefficient of the rainfall 

data with time was computed to determine 
the strength of the linear relationship the 
daily rainfall data with time, 

ii. the monotonic increasing or decreasing 
trend was tested using the non-parametric 
Mann-Kendall test, and 

iii. the slope of a linear trend is estimated  
with the nonparametric Sen’s slope 
estimator. 

 
2.2.1 Correlation coefficient 
 
The Pearson product moment correlation 
coefficient R, is a parametric test that measures 
the strength and the pattern of a linear 
relationship between two variables. It is 
mathematically given by [7]:              
          

� =
�∑���(∑�)(∑�)

��(∑��)�(∑�)
�
	��(∑��)�(∑�)

�
                         (3)      

 
R value ranges from –1 to +1, with +1 or –1 
indicating a perfect correlation (positive or 
negative) and a correlation coefficient close to or 
equal to zero indicating no relationship between 
the variables. A correlation greater than 0.8 is 
generally described as strong, whereas a 
correlation less than 0.5 is generally described 
as weak. While a positive correlation coefficient 
indicates a positive relationship i.e. both 
variables move in same direction, a negative 
correlation coefficient indicates a negative 
relationship i.e. both variables move in opposite 
directions [8].  
 
 
 

2.2.2 Mann-Kendall analysis 
 
The nonparametric Mann-Kendall test is usually 
used to detect trends that are monotonic but 
not necessarily linear. The Mann-Kendall test 
statistic S is computed using the formula [9]: 
 
� = ∑ ∑ ����(�� − ��)

�
�����

���
��� ,                          (4) 

 
Where xj and xk are the daily rainfall values and 
time in days j and k, with j > k, respectively. 
The sign ( ) function is defined as [10]: 
 
 
                                    1          ��	�� − �� > 0 

								������� − ���= 						0											��	�� − �� = 0    (5) 

                                    -1											��	�� − �� < 0 

 
A very high positive value of S (>120) is an 
indicator of an increasing trend, while a 
very low negative value indicates a decreasing 
trend [11]. The Man-Kendall parameter S and its 
variance VAR(S) are used to compute the test 
statistic Z as follows [9]: 
 
 

                
���

� ��� (�)
           ��	� > 0 

				� = 									0																								��	� = 0                     (6) 

																					
� + 1

� ���(�)
							��	� < 0 

 
The Z statistic follows a normal distribution trend, 
is tested at 95% (α=0.05) level of significance 
(�α

�
	
= 1.96) and its value describes the trend as 

[12]: 
 
i. decreasing if Z is negative and the 

absolute value is greater than the level of 
significance,  

ii. increasing if Z is positive and greater than 
the level of significance, and  

iii. no trend if the absolute value of Z is less 
than the level of significance.  

 
2.2.3 Sen’s slope estimator 
 
The Sen’s test is estimates the linear regression 
coefficient or true slope of an existing trend (i.e. 
change per day). The Sen’s method is used in 
cases where the trend can expressed as linear:   
 
�(�) = �� + �                                                     (7) 
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Where Q is the slope, B is a constant and t is 
time.  
 

���′�	���������,� = ��������� ��
�� �

�
�����

���
�               (8) 

 

For n values xj in the time series there will be as 

many as � =
�(���)

�
 slope estimates Qi of which 

the median value gives the Sen’s estimator, Q. In 
order to get an estimate of the intercept B in 
equation (7), the n values of differences �� − ��� 
are calculated and the median of these values 
gives an estimate of B [13].  
 

2.3 Spectral Analysis 
 
Spectral analysis is another simple way of 
characterizing attractors and is often used to 
qualitatively distinguish quasi-periodic or chaotic 
behavior from periodic structure and also to 
identify different periods embedded in a chaotic 
signal. Chaotic signals are characterized by the 
presence of wide broadband noise in their power 
spectrum, with a continuum of frequencies in 
their oscillations [14]. The power spectrum of a 
signal shows how a signal’s power is distributed 
throughout the frequency domain [15]. To 
convert the rainfall time domain series to 
frequency domain, the fast Fourier transform (fft) 
was applied. The power per Hertz is obtained 
from the square of the absolute value of the fast 
Fourier transform [16]: 
 
�����

��
= 	���{���[�(�)]}�		                                 (9) 

 
The periodicity of the rainfall in Katsina was 
estimated from the power spectrum as the 
reciprocal of the dominant frequency (peak or 
fundamental frequency) of the power spectrum 
plot [17].  
 
 

2.4 Nonlinear Analysis 
 
The tools of nonlinear analysis used to 
characterize the daily rainfall data in this              
paper include time series plot, phase portrait  
and Poincaré map, correlation dimension, 
Lyapunov exponents and Kolmogorov-Sinai 
entropy. 
 
2.4.1 Time series plot 
 
Time series plot involves plotting the daily, 
monthly and yearly rainfall data and observing 
the trend. If they exhibit irregular, aperiodic or 
unpredictable behaviour, then it could be 
described as random or chaotic. On the other 
hand, if they exhibit a regular repeating pattern, 
then the system exhibits either a periodic and 
quasi periodic behavior [18]. 
 
2.4.2 Phase portrait 
 
A phase portrait is a two-dimensional 
visualization of the phase-space. It displays the 
attractor and unveils its dynamics. Chaotic 
systems exhibit distinct shapes, periodic systems 
exhibit limit cycle (closed curves) while quasi 
periodic systems exhibit torus shape [14]. 
 
2.4.3 Poincaré maps 
 
The Poincaré map is that it represents a slice 
through the attractor of the dynamical system 
and it is a stroboscopic view of the phase  
portrait of the dynamical system; hence it can 
also be referred to as a stroboscopic map [19]. 
Poincaré maps of periodic systems show a single 
point, quasi-periodic systems show a closed 
curve while chaotic systems show distinct  
points. A summary of the different dynamical 
systems and their characteristics is shown in 
Table 1 [14]. 
 

Table 1. Different dynamic systems and the structure of their power spectrum, phase portraits 
and Poincaré maps 

 
Solution of Dynamical 
System 

Fixed Periodic Quasi Periodic Chaotic 

Power spectrum - Single 
dominant peak 

Dominant peak 
and other sub-
peaks 

Broad band noise with 
continuum  of frequencies; 
may peak at fo = 0 

Phase portrait Point Closed Curve 
 

Torus Distinct Shapes 
 

Poincaré Maps - Point Closed Curve Space filling or Ergodic 
points 
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2.4.4 Correlation dimension 
 
The correlation dimension gives a measure of 
the complexity or number of active degrees of 
freedom excited by the system [20]. The 
Grassberger-Procaccia algorithm is used to 
compute the correlation dimension in this work 
using the correlation integral. For any set 
of M points in an m-dimensional phase space, 
the correlation integral or correlation sum (spatial 
correlation of points) C(r) is computed by the 
equation [21]:  
 

��(�) = 	 lim�→∞
�

�(���)
	∑ ∑ ��� −�

�����
�
���

��−��                                                        (10)   

 
H(x) is the Heaviside function and ‖…‖	 is the 
Euclidean norm, while r is the scaling parameter. 
The correlation integral measures the fraction of 
the total number of pairs of phase points that are 
within a distance r from each other. For chaotic 
time series, the correlation integral power law for 
small values of r takes the form: 
 
  �(�)~��                                                         (11) 
 
Thus, the correlation dimension ν is given by: 
 

� = lim�→� lim�→∞
��� �(�)

��� �
	                            (12) 

 

Hence, a log-log graph of the correlation integral 
versus the scaling parameter, r will yield an 
estimate of the correlation dimension ν, which is 
computed from the slope of a least-square fit of a 
straight line over a large length scale of r. For 

chaotic systems, the correlation exponent curve 
for a range of values of embedding dimension 
(say m = 2 to 30) usually saturates at values 
beyond its actual embedding dimension. The 
saturation value of the correlation exponent plot 
gives the correlation dimension and the value of 
the embedding dimension at which the saturation 
of the correlation exponent curve occurs 
generally provides an upper bound on the 
number of variables sufficient to model the 
dynamics [18]. The dynamics of different 
systems based on their correlation exponent 
curve is described in Fig. 1 [3]: 
 
In Fig. 1, it can be seen that for chaotic systems, 
the correlation exponent curve increases initially 
then saturates after a specific value of 
embedding dimension are reached, with the 
saturation value of the correlation exponent 
curve being the correlation dimension of the 
system. The correlation exponent plot of 
stochastic systems generates a monotonic 
increasing curve which never saturates to a 
specific value while deterministic systems 
generate a constant value which does not vary 
with increasing embedding dimension.  
 
Furthermore, If the calculation of correlation 
dimension leads to a finite integer value, the 
underlying dynamics of the system is considered 
to be dominated by some strong periodic 
phenomena whereas if the value is fractional 
(and usually small) then the system is considered 
to be dominated by low dimensional deterministic 
chaotic dynamics governed by the geometrical 
and dynamical properties of the attractor [22]. 

 

 
 

Fig. 1. Characterization of systems based on their correlation exponent plot [3] 
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2.4.5 Lyapunov exponents 
 
Lyapunov exponents (λ) are the average rates of 
exponential divergence or convergence of 
nearby orbits in phase space and is a 
fundamental property that characterizes the rate 
of separation of infinitesimally close trajectories 
[23]. It is mathematically given by: 
 

��(�) = 	
�

�.∆�
	.

�

���
.∑ ln

��(�)

��(�)

���
��� 					                       (13) 

 
∆t is the sampling period of the time series, M is 
the number of reconstructed phase points and 
dj(i) is the distance between the ��ℎ  pair of 
nearest neighbors after i discrete-time steps, i.e., 
i.∆t seconds. The nearest neighbor, ��̂, is found 

by searching for the point that has the least 
distance to the particular reference point, ��. This 

is expressed as: 
 

dj (0) = min������ − ��̂�                                   (14) 

 
 dj(0) is the initial distance from the ��ℎ point to its 
nearest neighbor �̂ . A positive Lyapunov 
exponent indicates chaotic behavior, a negative 
value indicates a dissipative system i.e. a stable 
fixed point while a zero Lyapunov exponent 
indicates conservative system i.e. a periodic one 
or stable limit cycle [24]. The method used in this 
work to compute the largest Lyapunov exponent 
was developed by Rosenstein et al. in 1993 [25]. 
The Lyapunov (error folding) time or predictability 
T is the inverse of the largest Lyapunov exponent 
λ and is expressed as [26]:  
 

  � = 	
�

��
                                                           (15)   

 
2.4.6 Phase space reconstitution 
 
In order to effectively carry out nonlinear 
analysis, phase space reconstruction has to be 
done so as to draw out a multi-dimensional 
description of the system in an embedded space 
called state space. The method of delays was 
thus employed to achieve this [23],[27]. For a 
generalized time series {x1, x2,…,xN}, the 
attractor can be reconstructed in a m-
dimensional phase space of delay coordinates in 
form of the vectors:   
 

�� = ���,����,�����,…,���(���)��						              (16) 

 
τ is the time lag, and m is the embedding 
dimension. The time delay � is evaluated in this 
work using the method of average mutual 

information (AMI) developed by Cellucci et al. in 
2003 [28]. In order to obtain the time delay, the 
value of the lag length at the first local minimum 
of the AMI plot corresponding to the delay time of 
the time series [3],[18]. The minimum embedding 
dimension, m was computed using the method of 
“False Nearest Neighbors (FNN)” which was 
developed by Kennel et al. in 1992 [29]. By 
plotting the percentage of FNN against 
increasing embedding dimension values, a 
monotonic decreasing curve is observed and the 
minimum embedding dimension can be 
evaluated from the point where the percentage of 
FNN drops to almost zero or a minimum value. 
 
The mean period, � of the data was computed as 
the inverse of the peak period of the fast Fourier 
transform. The mean period or periodicity P in a 
time series removes cyclic/seasonal variations in 
a time series data by seasonal differencing 
technique. Seasonal differencing is achieved by 
taking the difference between an observation and 
the corresponding observation from the previous 
year or season using the expression [30]: 
 
						��

′ = �� − ����                                            (17) 
 
Where S = number of seasons or periodicity of 
the data. For monthly data, S = 12. 
 
The phase space reconstruction will not be 
properly achieved and the deterministic 
components of the data will not be adequately 
revealed if the data is not made stationary and 
this could lead to misleading results in the 
nonlinear analysis of the data [31]. 
 
2.5 Study Area and Data Source 
 
Katsina state, also known as the home of 
hospitality, is located in the North-Western region 
of Nigeria. The state is located within the 
coordinates 12°15′	�,7°30′	�  and 
12°25′	�,7°50′	 E, and was created on 23rd 
September 1987. It covers a total land area of 
24,192 km2 with a population density of 160 /km2 
and its landscape is largely dominated by the 
Sahel savannah vegetation. Katsina state 
experiences two dominant seasons: the rainy 
and dry season, with the Hausa-Fulani who are 
predominantly farmers being the largest ethnic 
group in the state [32]. The data used in this 
research was obtained from the Nigerian 
Meteorological Agency (NiMet) Abuja. It 
comprises of secondary data made up of daily 
average rainfall (mm) recorded in Katsina from 
1

st
 January 1990 to 31

st
 December 2015, a 
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period of twenty-six years. The daily rainfall 
values were then converted to monthly rainfall by 
taking the mean value per month.  
 

3. RESULTS AND DISCUSSION 
 
The results of the behavioural analysis of rainfall 
pattern in Katsina is presented in this section. 
 

3.1 Results of the Statistical Analysis 
 
The statistics of daily rainfall (mm) is displayed in 
Table 2: 
 
Table 2. Statistics of daily rainfall in Katsina 

 
Statistic Value 
No. of data points 312 
No. of nill values 153 (49%) 
Mean (mm) 1.573 
Standard Deviation (mm) 2.349 
Variance (mm) 5.518 
Coefficient of Variation (cv) 1.494 
Signal-to-noise ratio 0.669 
Maximum value (mm) 11.60 
Minimum value (mm) 0.00 
Kurtosis 5.253 
Skewness 1.660 

 
The results in Table 2 show a generally low 
overall mean value of daily rainfall (1.57 mm), a 
high variance of 5.518 and standard deviation of 
2.349 ( �� = 1.494 ). Furthermore a kurtosis of 
5.253 and Skewness of 1.66 (skew to the right) 
with a significant number of null rainfall values 
(49%) in the data indicating a sparse irregular 

distribution (high outlier-prone data) of monthly 
rainfall in Katsina over the last 26 years. This is 
attributed to the fact that Katsina is located in the 
Sahel savannah region of Nigeria within the 
Sahara desert region, hence the limited and 
sparse amount of rainfall received in the town. 
Fig. 2. (a) & (b) shows time series plots of 
monthly and seasonally differenced monthly 
rainfall in Katsina. 
 

3.2 Trend Analysis 
 
The summary of the trend analysis of the 
converted annual rainfall data using the Mann-
Kendall trend test, Sen’s slope estimator and 
Pearson’s correlation coefficient are displayed in 
Table 3 and Fig. 3. The seasonal monthly rainfall 
values were used here by removing the null 
values recorded during the dry season. 
 
The trend analysis results in Table 3 (Mann-
Kendall test) and Fig. 2 (Sen’s slope estimator) 
indicates that the trends of the annual rainfall in 
Katsina is significant as the Z-statistic computed 
(2.397) is greater than the z-value at the level of 
significance (1.96). This implies an increasing 
trend in the seasonal monthly rainfall in Katsina 
City. Hence there could be an increased risk of 
occurrences of flooding and surface run-
off/erosion in the nearest future.  
 

3.3 Results of Spectral Analysis 
 
The result of the spectral analysis of daily rainfall 
in Katsina from 1990 to 2015 is displayed in      
Fig. 4. 

 
 

 
(a) 

 

 
(b) 

 
Fig. 2. Time Series for: (a) Monthly rainfall and (b) Seasonally differenced monthly rainfall 

(seasonality = 12 months) time series for Katsina from 1990-2015 
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Table 3. Summary of the Mann-Kendall analysis for annual rainfall in Katsina 
 
Variable Result 
Pearson’s correlation coefficient (R) 0.2025 
Kendall tau 0.1278 
Mann-Kendell coefficient S 1625 
Z statistic 2.397 
Hypothesis test (h=1: significant, h=0: not significant) h = 1 
Trend description (from R and Z values) Increasing trend 
Trend Significance Significant 

 

 
 

Fig. 3. Seasonal monthly rainfall trend for Katsina using Sen’s Slope Model,	� = �.���� +
�.��� (increasing trend observed) 

 

 
 

Fig. 4. Power Spectrum of Rainfall in Katsina showing the Dominant Frequency 
 
The result of the spectral analysis displayed in 
Fig. 4 shows that the rainfall in Katsina has a 
single dominant peak with a mean annual 
monthly cycle of 12 months rainfalls. Also the 

average rainfall duration per year which is the 
inverse of the frequency of the second dominant 
peak in the power spectrum was found to be 
about 5.25 ≈ 5 months. 
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3.4 Results of the Nonlinear Analysis 
 
Fig. 5 shows the estimation of time lag using the 
method of average mutual information (AMI). A 
delay time of 2 months was calculated for the 
monthly rainfall dataset. Fig. 6, on the other 
hand, illustrates the determination of the 
optimum embedding dimension using the method 
of false nearest neighbours (FNN). The monthly 
rainfall data for Katsina was found to have an 
embedding dimension of eleven 	(� = 6) . The 
embedding dimension value obtained indicates 
that the rainfall in Katsina requires a maximum of 
6 independent variables (degrees of freedom) to 
model its dynamics. 
 
Figs. 7 and 8 show the phase portrait and 
Poincaré map for rainfall constructed using the 
time lag and embedding dimensions calculated. 
The phase portrait exhibits a sponge-like 
geometry of distinct shapes tending towards the 
origin (zero) while the Poincaré map shows 
scattered distinct points also tending towards an 
equilibrium point (attractor) indicating the 
presence of dissipative-damped random cycles 
in the dynamics of the rainfall time series. These 
plotted phase points are concentrated at the 
origin due to the number of null values (49%) in 
the monthly rainfall dataset which is as a result of 
the sparse distribution of rainfall in Katsina. 
 

The correlation dimension was then calculated 
for the monthly rainfall data using the time lag 
� = 2 and for increasing embedding dimensions, 
m, from 2 to 45. Fig. 9 is a plot showing the 
relationship between the correlation function C(r) 
and the radius r (i.e. log �(�)  versus 	log � ) for 
increasing embedding dimension m while Fig. 10 
shows the relationship between the correlation 
exponents and the embedding dimension values 

m. It is observed from Fig. 10 that the correlation 
exponent values increase with increasing 
embedding dimension up to m = 15 and then 
plateaus and saturates to a value � = 5.892.  The 
saturation of the correlation exponent indicates a 
likely chaotic behavior in the monthly rainfall time 
series with a correlation dimension of 5.89. This 
implies that six (6) degrees of freedom are 
required to model the monthly rainfall in Katsina 
city. 
 

The Lyapunov spectrum obtained from the 
computation of the Lyapunov exponent for 
monthly rainfall in Katsina using Rosenstein’s 
algorithm is displayed in Fig. 11 while the details 
of the Lyapunov exponents for increasing values 
of embedding dimension is presented in Table 4. 
 
Table 4. The Lyapunov exponent values from 

m=1 to 6 
 

Embedding 
dimension (m) 

Lyapunov exponent 
(λ) 

1 0.002319599722999 
2 0.002612172302405 
3 0.004597975112222 
4 0.005108843110237 
5 0.005288871379006 
6 0.006055059727202 
*Largest Lyapunov exponent, λ = 0.006055 /month 

 
The largest Lyapunov exponent for the monthly 
rainfall time series in Katsina was computed and 
found to be 0.006055/month. The positive value 
of the largest Lyapunov exponent confirms the 
fact that the monthly rainfall in Katsina over the 
last 26 years exhibits chaotic behaviour and the 
monthly rainfall is predictable for the next 165 
months. 

 

 
 

Fig. 5. Estimation of time lag using the method of AMI (τ = 2 months) 
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Fig. 6. Percentage of FNN for Rainfall in Katsina (m = 6) 
 

 
 

Fig. 7. Phase portrait of monthly rainfall in Katsina 
 

 
 

Fig. 8. Poincaré map of monthly rainfall in Katsina 
 

0 5 10 15 20 25 30 35 40 45 50
20

30

40

50

60

70

80

90

100

110

X: 6

Y: 25.78

Embedding dimension

T
h

e 
p

er
ce

n
ta

g
e 

o
f 

fa
ls

e 
n

e
ar

es
t 

n
ei

g
h

b
o

u
rs

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-5

0

5

10

x
i

x
i+

t

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

X
t

X
t+




 
 
 
 

Tikyaa et al.; PSIJ, 21(3): 1-13, 2019; Article no.PSIJ.42778 
 
 

 
11 

 

 
 

Fig. 9. log-log plot showing the relationship between the Correlation Integral C(r) and the 
Scaling Radius r for different values of embedding dimension for monthly rainfall in Katsina 

from 1990-2015 
 

 
 

Fig. 10. The relationship between correlation exponent and embedding dimension m for 
monthly rainfall in Katsina from 1990-2015 

 

 
 

Fig. 11. The Lyapunov Spectrum for the Estimation of the Largest Lyapunov Exponent for 
monthly rainfall in Katsina from 1990-2015. 
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4. CONCLUSION 
 
In this paper, an analysis of the characteristics of 
monthly rainfall pattern in Katsina from the year 
1990-2015 was carried out. The outcome of this 
analysis indicates that the rainfall in Katsina 
exhibits an increasing trend with high variance 
and low dimensional chaotic behaviour. A 
maximum of six (6) independent variables is 
required to model the monthly rainfall in Katsina 
while the rainfall is sparse and has good 
predictability in the next 165 months. It is 
recommended that adequate measures be taken 
to stem the trend of irregular rainfall pattern in 
the years to come. These measures include 
clearing of drainages and waterways as well as 
the building of dams to provide water for 
irrigation and to also help contain water from 
flash floods which is being envisaged from the 
results of this research as a result of climate 
change which is very eminent in the northern part 
of Nigeria. 
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